A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Transforming growth factor beta1 enhances tumor promotion in mouse skin carcinogenesis. | LitMetric

Transforming growth factor beta1 enhances tumor promotion in mouse skin carcinogenesis.

Carcinogenesis

Department of Veterinary and Biomedical Sciences, The Center for Molecular Toxicology and Carcinogenesis, Pennsylvania State University, 201 Life Sciences Building, University Park, PA 16802, USA.

Published: June 2010


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Transforming growth factor beta1 (TGFbeta1) expression is elevated by tumor promoters in the mouse skin, but its role in tumor promotion has not been well defined. To investigate this, we have compared TGFbeta1+/+ and +/- mice in a two-stage skin chemical carcinogenesis protocol. Surprisingly, TGFbeta1+/- mice had fewer number and incidence of benign papillomas, reduced epidermal and tumor cell proliferation and reduced epidermal TGFbeta1 and nuclear p-Smad2 localization in response to the tumor promoter 12-O-tetradecanoylphorbol 13-acetate (TPA) compared with TGFbeta1+/+ mice. Maximal TPA activation of protein kinase C (PKCalpha) as measured by activity assays and activation of target genes and induction of cornified envelopes correlated with TGFbeta1 gene dosage in keratinocytes and addition of exogenous TGFbeta1 restored the cornification defect in TGFbeta1+/- keratinocytes. Similarly, inhibition of ALK5-suppressed TPA-mediated PKCalpha activation suggesting that physiological levels of TGFbeta1 are required for maximal activation of PKC-dependent mitogenic responses. Paradoxically, the TPA-induced inflammatory response was greater in TGFbeta1+/- skin, but TGFbeta1+/+ papillomas had more tumor infiltrating myeloperoxidase-positive cells and pro-inflammatory gene expression was elevated in v-ras(Ha)-transduced TGFbeta1+/+ but not TGFbeta1+/- keratinocytes. Thus, ras activation switches TGFbeta1 to a pro-inflammatory cytokine. Despite this differential proliferative and inflammatory response to TPA and enhanced papilloma formation in the TGFbeta1+/+ mice, the frequency of malignant conversion was reduced compared with TGFbeta1+/- mice. Therefore, TGFbeta1 promotes benign tumors by modifying tumor promoter-induced cell proliferation and inflammation but retains a suppressive function for malignant conversion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2878359PMC
http://dx.doi.org/10.1093/carcin/bgq041DOI Listing

Publication Analysis

Top Keywords

transforming growth
8
growth factor
8
factor beta1
8
tumor promotion
8
mouse skin
8
expression elevated
8
compared tgfbeta1+/+
8
tgfbeta1+/- mice
8
reduced epidermal
8
cell proliferation
8

Similar Publications