A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Control of secondary metabolism by farX, which is involved in the gamma-butyrolactone biosynthesis of Streptomyces lavendulae FRI-5. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The gamma-butyrolactone signaling system is distributed widely among streptomycetes as an important regulatory mechanism of antibiotic production and/or morphological differentiation. IM-2 [(2R,3R,1'R)-2-(1'-hydroxybutyl)-3-hydroxymethyl-gamma-butanolide] is a gamma-butyrolactone that switches off the production of D: -cycloserine but switches on the production of several nucleoside antibiotics as well as blue pigment in Streptomyces lavendulae FRI-5. farX is a member of the afsA-family genes, which are proposed to encode enzymes involved in gamma-butyrolactone biosynthesis. Disruption of farX caused overproduction of D: -cycloserine, and abolished production of nucleoside antibiotic and blue pigment with the loss of IM-2 production. The finding that all phenotypic changes observed in the farX disruptant were restored by the addition of exogenous IM-2 suggested that FarX plays a biosynthetic role in IM-2 production. Transcriptional comparison between the wild-type strain and the farX disruptant revealed that, in addition to already known genes farR1 and farR2, several other genes (farR4, farD, and farE) are under the transcriptional regulation of IM-2. Furthermore, the fact that farX transcription is under the control of IM-2 suggested that S. lavendulae FRI-5 has a fine-tuning system to control gamma-butyrolactone production.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00203-010-0550-3DOI Listing

Publication Analysis

Top Keywords

lavendulae fri-5
12
involved gamma-butyrolactone
8
gamma-butyrolactone biosynthesis
8
streptomyces lavendulae
8
switches production
8
production nucleoside
8
blue pigment
8
im-2 production
8
farx disruptant
8
im-2 suggested
8

Similar Publications