98%
921
2 minutes
20
Wheat (Triticum aestivum) collected in the Nawanshahr-Hoshiarpur Region (Punjab, India) showed the highest selenium concentrations ever recorded in cereal grains (29-185 microg g(-1)). There was a strong positive relationship between the selenium content in shoots and that in kernels, showing that grain selenium concentration can be predicted from that in the vegetative tissues of the plant. The identity and content of the selenocompounds in the grain samples and in wheat-based reference materials were investigated by HPLC-ICP-dynamic reaction cell-MS. Reversed-phase, cation exchange, and anion exchange HPLC were used to separate the selenium species after ultrasound-assisted enzymatic extraction with an ultrasonic probe. Selenomethionine and selenate accounted for 72-85% and 2-6% of the sum of the selenium species, respectively. The proportion of organic Se species varied with increasing Se content; namely, SeMet showed a relative reduction whereas the other organoselenium compounds increased up to 18-22% of the total chromatographed selenium. Se-methyl-selenocysteine was detected as a minor compound (0.2-0.5%) in high-Se wheat by both reversed-phase and cation exchange HPLC using retention time matching with the standard substance spiked to the sample extracts. Regular consumption of locally produced wheat-based food items may lead the population of the study area to an excessive intake of selenium. On the other hand, the large predominance of selenomethionine shows that local wheat can be a promising raw material for naturally enriched products to be used to supplement human and animal diets in low selenium areas.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jf903004a | DOI Listing |
Chem Asian J
September 2025
Beijing University of Chemical Technology, 15 Beisanhuan East Road, Beijing, 100029, China.
Selenium (Se) is an essential trace element, and dietary Se sources can be metabolized to a shared metabolite, hydrogen selenide (HSe). HSe is the key precursor for the biosynthesis of Se-containing biomolecules and may be considered as an emerging gasotransmitter. Development of chemical tools and materials for controllable release of HSe is significant in understanding Se-related chemical biology and may open new avenues for treating some diseases.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2025
State Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.
Selenium, as an important semiconductor material, exhibits significant potential for understanding lattice dynamics and thermoelectric applications through its thermal transport properties. Conventional empirical potentials are often unable to accurately describe the phonon transport properties of selenium crystals, which limits in-depth understanding of their thermal conduction mechanisms. To address this issue, this study developed a high-precision machine learning potential (MLP), with training datasets generated molecular dynamics simulations.
View Article and Find Full Text PDFVet World
July 2025
Department of Basic Medical Sciences, Division of Physiology, Manipal Academy of Higher Education, Manipal, Karnataka, India.
Arsenic exposure remains a critical global health concern, with growing evidence linking it to significant kidney dysfunction. This review examines the underlying mechanisms of arsenic-induced nephrotoxicity, including oxidative stress, mitochondrial dysfunction, inflammation, and programmed cell death, which collectively contribute to damage in the glomeruli and renal tubules. Chronic exposure is associated with proteinuria, renal impairment, and an increased risk of chronic kidney disease (CKD).
View Article and Find Full Text PDFMed Phys
September 2025
Medical Physics Unit, Department of Oncology, Faculty of Medicine, McGill University, Montréal, Québec, Canada.
Background: Se ( 120 days, 215 keV) offers advantages over Ir ( 74 days, 360 keV) as a high dose rate brachytherapy source due to its lower gamma energy and longer half-life. Despite its widespread use in industrial gamma radiography, a Se brachytherapy source has yet to be manufactured.
Purpose: A novel Se-based source design with a vanadium diselenide core, titled the SeCure source, was proposed.
Plant Cell Environ
September 2025
College of Plant Protection, Shandong Agricultural University, Taian, Shandong, China.
Selenium and boron can alleviate lead (Pb) toxicity in plants, but their stress resistance mechanisms in tobacco remain unclear. The aim of this study was to investigate the effects of Se/B application on lead-induced oxidative stress, subcellular distribution, cell wall properties, and Pb accumulation. Additionally, a comprehensive analysis of transcriptomics and metabolomics data was conducted.
View Article and Find Full Text PDF