98%
921
2 minutes
20
Myelodysplastic syndromes (MDS) are a heterogeneous group of clonal haematopoietic stem cell malignancies. A subgroup, the so-called sideroblastic MDS, shows ring sideroblasts in the bone marrow aspirate that represent mitochondrial iron accumulation. Patients with sideroblastic MDS also develop systemic iron overload and generally have a low-risk MDS. Therefore it is important to understand the mechanisms responsible for iron accumulation and the associated toxicity in these patients. Recently, low levels of the iron-regulatory peptide hepcidin were found to contribute to body iron overload in beta-thalassaemia patients. A similar mechanism may account for systemic iron accumulation in sideroblastic MDS. Mitochondrial iron accumulation is observed in several subtypes of MDS, and predominantly in refractory anaemia with ring sideroblasts. The presence of ring sideroblasts is also the diagnostic hallmark in patients with inherited forms of sideroblastic anaemia. The ever-increasing insights into the affected pathways in inherited sideroblastic anaemia may lead to a better comprehension of the pathogenesis of mitochondrial iron accumulation in MDS patients. Overall, an improved understanding of the mechanisms responsible for iron overload in MDS will lead to novel treatment strategies to reduce both systemic and mitochondrial iron overload, resulting in less tissue damage and more effective erythropoiesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1365-2141.2009.08051.x | DOI Listing |
Cell Signal
September 2025
Department of Orthopedics, Affiliated Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, China. Electronic address:
Bone morphogenetic proteins (BMPs) are effective for treating various orthopedic conditions and are widely used clinically. However, their therapeutic efficacy is limited in osteoporosis patients. Iron overload represents a key risk factor for osteoporosis, inducing ferroptosis and suppressing the osteogenic differentiation of bone marrow stromal cells (BMSCs).
View Article and Find Full Text PDFMol Cell Biol
September 2025
Department of Hematology, Tohoku University Graduate School of Medicine, Sendai, Japan.
Erythropoiesis, i.e., process of red blood cell (RBC) production, is highly dependent on iron, with 60-70% of the total body iron incorporated into hemoglobin.
View Article and Find Full Text PDFCongenital dyserythropoietic anemia type III (CDA III) is an extremely rare inherited disorder characterized by ineffective erythropoiesis, multinucleated erythroblasts in the bone marrow, and variable clinical gravity. We report the case of a 6-year-old boy, presenting with abdominal distension, failure to thrive, dark urine, intermittent itching, and recurrent infections. Physical examination revealed pallor, hepatomegaly, and splenomegaly.
View Article and Find Full Text PDFBlood
September 2025
Université Paris cité, INSERM, Institut Cochin, CNRS, Paris, France.
Hepcidin is the key hyposideremic hormone produced primarily by the liver. However, recent reports reveal extra-hepatic functional sources of hepcidin, including the intestine, the site of dietary iron absorption. To determine whether intestinal hepcidin may play a role in plasma iron lowering, we generated transgenic mice overexpressing the peptide specifically in this tissue.
View Article and Find Full Text PDFEndocrine
September 2025
Section of Endocrinology, Geriatrics and Internal Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy.