Segmentation and classification of hyperspectral images using minimum spanning forest grown from automatically selected markers.

IEEE Trans Syst Man Cybern B Cybern

Grenoble Images Speech Signals and Automatics Laboratory (GIPSA Lab), Grenoble Institute of Technology (INPG), 38402 Grenoble, France.

Published: October 2010


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A new method for segmentation and classification of hyperspectral images is proposed. The method is based on the construction of a minimum spanning forest (MSF) from region markers. Markers are defined automatically from classification results. For this purpose, pixelwise classification is performed, and the most reliable classified pixels are chosen as markers. Each classification-derived marker is associated with a class label. Each tree in the MSF grown from a marker forms a region in the segmentation map. By assigning a class of each marker to all the pixels within the region grown from this marker, a spectral-spatial classification map is obtained. Furthermore, the classification map is refined using the results of a pixelwise classification and a majority voting within the spatially connected regions. Experimental results are presented for three hyperspectral airborne images. The use of different dissimilarity measures for the construction of the MSF is investigated. The proposed scheme improves classification accuracies, when compared to previously proposed classification techniques, and provides accurate segmentation and classification maps.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TSMCB.2009.2037132DOI Listing

Publication Analysis

Top Keywords

segmentation classification
12
classification
9
classification hyperspectral
8
hyperspectral images
8
minimum spanning
8
spanning forest
8
pixelwise classification
8
grown marker
8
classification map
8
segmentation
4

Similar Publications

Purpose To assess the effectiveness of an explainable deep learning (DL) model, developed using multiparametric MRI (mpMRI) features, in improving diagnostic accuracy and efficiency of radiologists for classification of focal liver lesions (FLLs). Materials and Methods FLLs ≥ 1 cm in diameter at mpMRI were included in the study. nn-Unet and Liver Imaging Feature Transformer (LIFT) models were developed using retrospective data from one hospital (January 2018-August 2023).

View Article and Find Full Text PDF

The morphological patterns of lung adenocarcinoma (LUAD) are recognized for their prognostic significance, with ongoing debate regarding the optimal grading strategy. This study aimed to develop a clinical-grade, fully quantitative, and automated tool for pattern classification/quantification (PATQUANT), to evaluate existing grading strategies, and determine the optimal grading system. PATQUANT was trained on a high-quality dataset, manually annotated by expert pathologists.

View Article and Find Full Text PDF

Diffuse large B-cell lymphoma is the most common type of non-Hodgkin lymphoma (NHL) in humans, accounting for about 30-40% of NHL cases worldwide. Canine diffuse large B-cell lymphoma (cDLBCL) is the most common lymphoma subtype in dogs and demonstrates an aggressive biologic behaviour. For tissue biopsies, current confirmatory diagnostic approaches for enlarged lymph nodes rely on expert histopathological assessment, which is time-consuming and requires specialist expertise.

View Article and Find Full Text PDF

Coronary artery aneurysms (CAAs) are frequent entities that are encountered in up to 8% of patients undergoing coronary imaging. The most frequent cause of CAAs is atherosclerotic "positive remodeling" of coronary arteries, while congenital, inflammatory, and traumatic etiologies could also be seen. Aneurysms serve as foci for thrombus formation, which may occlude the aneurysmatic segment or embolize distally.

View Article and Find Full Text PDF

The role of AI for improved management of breast cancer: Enhanced diagnosis and health disparity mitigation.

Comput Methods Programs Biomed

September 2025

Electrical and Computer Engineering Department, School of Engineering, Morgan State University, Baltimore, MD, 21251, USA. Electronic address:

Breast Cancer (BC) remains a leading cause of morbidity and mortality among women globally, accounting for 30% of all new cancer cases (with approximately 44,000 women dying), according to recent American Cancer Society reports. Therefore, accurate BC screening, diagnosis, and classification are crucial for timely interventions and improved patient outcomes. The main goal of this paper is to provide a comprehensive review of the latest advancements in BC detection, focusing on diagnostic BC imaging, Artificial Intelligence (AI) driven analysis, and health disparity considerations.

View Article and Find Full Text PDF