Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The synthesis, characterisation, and TiO2 binding studies of a series of chromophoric complexes of 5-(4-carboxyphenyl)-4,6-dipyrrin (L(b)) are presented. The synthesis of [Ru(bipy)(L(b))2] (bipy = 2,2-bipyridine), [Rh(L(b))3], and [Pd(L(b))2] was achieved by initial coordination of 5-(4-methoxycarbonylphenyl)-4,6-dipyrrin (L(a)) followed by hydrolysis of the ester group. The carboxyl groups that are located on the peripheries of these complexes are able to engage in intermolecular hydrogen bonding interactions in the solid state, as revealed by X-ray crystallography. These groups also allow the complexes to anchor to the surface of TiO2 nanoparticles, as evidenced by colouration of the TiO2 and FT-IR spectroscopy. The ability of these complexes to capture a significant fraction of sunlight and to adhere to TiO2 surfaces renders them viable dyes for photochemical devices such as dye sensitised solar cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/b912332f | DOI Listing |