Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The influence of biomechanical stimuli on modulating cartilage homeostasis is well recognized. However, many aspects of cellular mechanotransduction in cartilage remain unknown. We developed a computer-controlled joint motion and loading system (JMLS) to study the biological response of cartilage under well-characterized mechanical loading environments. The JMLS was capable of controlling (i) angular displacement, (ii) motion frequency, (iii) magnitude of the axial compressive load applied to the moving joint, and it featured real-time monitoring. The accuracy and repeatability of angular position measurements, the kinematic misalignment error as well as the repositioning error of the JMLS were evaluated. The effectiveness of the JMLS in implementing well-defined loading protocols such as moderate Passive Motion Loading (PML) and increased Compressive Motion Loading (CML) were tested. The JMLS demonstrated remarkable accuracy and reliability for the measurement and kinematics tests. Moreover, the effectiveness test demonstrated the ability of the JMLS to produce an effective stimulus via PML that led to the suppression of the catabolic effects of immobilization. Interestingly, the biological response of the CML group was catabolic and exhibited a pattern similar to that observed in the immobilization group. This novel non-invasive system may be useful for joint biomechanics studies that require different treatment conditions of load and motion in vivo.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2870720 | PMC |
http://dx.doi.org/10.1007/s10439-009-9865-0 | DOI Listing |