98%
921
2 minutes
20
We have characterized a Fremyella diplosiphon TonB protein (FdTonB) and investigated its function during complementary chromatic adaptation. Sequence similarity analysis of FdTonB (571 aa) led to identification of several conserved domains characteristic of TonB proteins, including an N-terminal transmembrane domain, a central proline-rich spacer and a C-terminal TonB-related domain (TBRD). We identified a novel glycine-rich domain containing (Gly-X)(n) repeats. To assess FdTonB function, we constructed a DeltatonB mutant through homologous recombination based upon truncation of the central proline-rich spacer, glycine-rich domain and TBRD. Our DeltatonB mutant exhibited an aberrant cellular morphology under green light, with expanded cell width compared to the parental wild-type (WT) strain. The cellular morphology of the DeltatonB mutant recovered upon WT tonB expression. Interestingly, tonB expression was found to be independent of RcaE. As DeltatonB and WT strains respond in the same way when grown under iron-replete versus iron-limited conditions, our results suggest that FdTonB is not involved in the classic TonB function of mediating cellular adaptation to iron limitation, but exhibits a novel function related to the photoregulation of cellular morphology in F. diplosiphon.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1099/mic.0.035410-0 | DOI Listing |
Microb Genom
September 2025
International Centre of Excellence for Aquatic Animal Health, The Centre for Environment, Fisheries and Aquaculture Science, Weymouth, DT4 8UB, UK.
High rates of mortality of the common cockle, , have occurred in the Wash Estuary, UK, since 2008. A previous study linked the mortalities to a novel genotype of , with a strong correlation between cockle moribundity and the presence of . Here, we characterize a novel iridovirus, identified by chance during metagenomic sequencing of a gradient purification of cells, with the presence also correlated to cockle moribundity.
View Article and Find Full Text PDFPLoS One
September 2025
Department of Emergency, The People's Hospital of Guangxi Zhuang Autonomous Region and Research Center of Medical Sciences, Guangxi Academy of Medical Sciences, Nanning, Guangxi, China.
Radiotherapy, a prevalent and effective treatment for various malignancies, often causes collateral damage to normal skin and soft tissues in the irradiated area. To address this, we developed a novel approach combining SVFG-modified adipose-derived high-activity matrix cell clusters (HAMCC) with concentrated growth factors (CGF) to enhance regeneration and repair of radiation-induced skin and soft tissue injuries. Our study included cellular assays, wound healing evaluations, and histological analyses.
View Article and Find Full Text PDFPLoS One
September 2025
Department of Science, LLP "Research and Production Enterprise "Innovator", Astana, Kazakhstan.
This study investigates the physicochemical, microbiological, and microstructural changes in soft wheat grain during germination under varying moisture conditions: moderately dry, moist, and wet. Pre-harvest sprouting can severely compromise grain quality and usability; however, understanding germination-induced changes offers insights into potential utilization strategies. Physical parameters-including thousand-kernel weight, test weight, and falling number-showed strong correlation with germination time, decreasing by 8.
View Article and Find Full Text PDFPLoS Biol
September 2025
National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India.
Morphogenetic information arises from a combination of genetically encoded cellular properties and emergent cellular behaviors. The spatio-temporal implementation of this information is critical to ensure robust, reproducible tissue shapes, yet the principles underlying its organization remain unknown. We investigated this principle using the mouse auditory epithelium, the organ of Corti (OC).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202.
Retinal ganglion cells (RGCs) are highly compartmentalized neurons whose long axons serve as the sole connection between the eye and the brain. In both injury and disease, RGC degeneration occurs in a similarly compartmentalized manner, with distinct molecular and cellular responses in the axonal and somatodendritic regions. The goal of this study was to establish a microfluidic-based platform to investigate RGC compartmentalization in both health and disease states.
View Article and Find Full Text PDF