98%
921
2 minutes
20
Polystyrene latex microspheres are widely used as surrogates for biocolloid transport in porous media; however, relatively few studies directly compare microsphere transport with that of the microorganism it is intended to represent, particularly at the field scale. Here, we compared the transport behaviour of a bacterium (Escherichia coli RS2g; 1.2 microm in diameter) and three different sized microspheres (1.1, 3.9, and 4.8 microm in diameter) within undisturbed agricultural field soil following infiltration under partially saturated conditions. The soil contained significant macroporosity. A tension infiltrometer was used to control the application of a transport solution containing Brilliant Blue FCF dye to two plots. A >2 log reduction in the concentration of all colloids was observed from the soil surface to 5 cm depth in both plots. The concentration of colloids in the soil was generally proportional to the intensity of soil dye staining; however, both the E. coli RS2g bacterium and the 1.1 microm microspheres appeared to be transported deeper than the other colloids and the visible dye along root holes at the bottom of the profile in both plots. The similarities in size and zeta potential of the 1.1 microm microspheres and the E. coli RS2g likely contributed to that outcome. Colloid concentrations in dyed soil by depth were similar between the two plots, despite differences in soil properties and infiltration patterns. The properties of the colloids and macropore density were the most important factors affecting colloid transport. These results suggest that microspheres with size and surface properties similar to the microbe of interest are useful surrogates to trace potential pathways of transport in the subsurface.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2009.10.010 | DOI Listing |
Water Res
February 2010
Department of Earth and Environmental Sciences, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.
Polystyrene latex microspheres are widely used as surrogates for biocolloid transport in porous media; however, relatively few studies directly compare microsphere transport with that of the microorganism it is intended to represent, particularly at the field scale. Here, we compared the transport behaviour of a bacterium (Escherichia coli RS2g; 1.2 microm in diameter) and three different sized microspheres (1.
View Article and Find Full Text PDFJ Environ Qual
January 2004
Department of Agronomy, 2537 Agronomy Hall, Iowa State University, Ames, IA 50011-1010, USA.
The time between swine (Sus scrofa) manure application to soil as a crop fertilizer, the first rainfall event, and the frequency of rainfall events should influence leaching potential of fecal pathogens. Soil microcosms were inoculated in the lab with a swine manure isolate of Escherichia coli, strain RS2G, expressing green fluorescent protein, to examine how timing and frequency of rainfall events influences RS2G leaching and survival in soil. Liquid swine manure inoculated with RS2G was applied to intact soil cores (20 cm in diameter x 30 cm long) 4, 8, or 16 d before the first rainfall event (50.
View Article and Find Full Text PDF