A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

The strength of anticipatory spatial biasing predicts target discrimination at attended locations: a high-density EEG study. | LitMetric

The strength of anticipatory spatial biasing predicts target discrimination at attended locations: a high-density EEG study.

Eur J Neurosci

The Cognitive Neurophysiology Laboratory, Nathan S. Kline Institute for Psychiatric Research, Program in Cognitive Neuroscience and Schizophrenia, Orangeburg, NY, USA.

Published: December 2009


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cueing relevant spatial locations in advance of a visual target results in modulated processing of that target as a consequence of anticipatory attentional deployment, the neural signatures of which remain to be fully elucidated. A set of electrophysiological processes has been established as candidate markers of the invocation and maintenance of attentional bias in humans. These include spatially-selective event-related potential (ERP) components over the lateral parietal (around 200-300 ms post-cue), frontal (300-500 ms) and ventral visual (> 500 ms) cortex, as well as oscillatory amplitude changes in the alpha band (8-14 Hz). Here, we interrogated the roles played by these anticipatory processes in attentional orienting by testing for links with subsequent behavioral performance. We found that both target discriminability (d') and reaction times were significantly predicted on a trial-by-trial basis by lateralization of alpha-band amplitude in the 500 ms preceding the target, with improved speed and accuracy resulting from a greater relative decrease in alpha over the contralateral visual cortex. Reaction time was also predicted by a late posterior contralateral positivity in the broad-band ERP in the same time period, but this did not influence d'. In a further analysis we sought to identify the control signals involved in generating the anticipatory bias, by testing earlier broad-band ERP amplitude for covariation with alpha lateralization. We found that stronger alpha biasing was associated with a greater bilateral frontal positivity at approximately 390 ms but not with differential amplitude across hemispheres in any time period. Thus, during the establishment of an anticipatory spatial bias, while the expected target location is strongly encoded in lateralized activity in parietal and frontal areas, a distinct non-spatial control process seems to regulate the strength of the bias.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1460-9568.2009.06980.xDOI Listing

Publication Analysis

Top Keywords

anticipatory spatial
8
broad-band erp
8
time period
8
target
6
strength anticipatory
4
spatial biasing
4
biasing predicts
4
predicts target
4
target discrimination
4
discrimination attended
4

Similar Publications