98%
921
2 minutes
20
Tumor hypoxia is one of the features of tumor microenvironment that contributes to chemoresistance in particular by cellular adaptations that modulate the apoptotic process. However, the mechanisms involved in this resistance still need deeper understanding. In this study, we investigated the involvement of four transcription factors, c-Myc, nuclear factor kappaB (NF-kappaB), p53, and c-jun/activator protein 1 (AP-1) in the hypoxia-induced resistance to etoposide in HepG2 cells. Whereas the profile of c-Myc and NF-kappaB activity did not fit the effect of hypoxia on caspase 3 activity, hypoxia decreased basal p53 abundance and DNA binding activity as well as p53 etoposide-induced activation. Short interfering RNA (siRNA) silencing evidenced that p53 was required for etoposide-induced apoptosis under normoxia. An inhibition of its activity under hypoxia could thus be responsible at least in part for the protection observed under hypoxic conditions. Moreover, p53 was found to induce the expression of Bak1. We showed that Bak1 was involved in the etoposide-induced apoptosis because Bak1 siRNA decreased it. Conversely, hypoxia increased c-jun DNA binding activity in the presence of etoposide. siRNA-mediated silencing of c-jun increased the responsiveness of cells to etoposide under hypoxia, as shown by an increase in caspase 3 activity and lactate dehydrogenase release. These effects occurred in a p53-independent manner. These data evidenced that hypoxia decreased the responsiveness of HepG2 cells to etoposide at least by two independent pathways involving p53 inhibition and c-jun activation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2745664 | PMC |
http://dx.doi.org/10.1593/neo.09632 | DOI Listing |
Int J Biol Macromol
September 2025
Center for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macau. Electronic address:
Protein-nucleic acid interactions (PNI) play crucial roles in various life processes, including gene expression regulation, DNA replication, repair, recombination, and RNA processing and translation. However, accurately predicting these interactions remains challenging due to their complexity. This paper proposes a deep learning-based multi-task learning framework for predicting protein-nucleic acid interactions.
View Article and Find Full Text PDFCancer Lett
September 2025
Cancer Center, Shanghai General Hospital of Nanjing Medical University, Shanghai, China; Shanghai Key Laboratory for Pancreatic Diseases and Cancer Center, Shanghai, China. Electronic address:
Radiotherapy, a pivotal treatment for colorectal cancer, is compromised by tumor repopulation, which is characterized by accelerated growth and increased treatment resistance. Although radiation-induced DNA breaks eliminate most cells, a subset of polyploid giant cancer cells (PGCCs) evade death through massive genomic amplification, subsequently undergoing depolyploidization via a viral budding-like process to generate proliferative progeny. Critically, these PGCCs drive tumor repopulation and underpin therapeutic failure.
View Article and Find Full Text PDFFree Radic Biol Med
September 2025
Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, 55812 USA. Electronic address:
SLC7A11 encodes the glutamate-cystine exchanger xCT, which is a key regulator of intracellular antioxidant capacity and extracellular glutamate levels. We have identified SLC7A11 as a direct target of the glucocorticoid receptor (GR). The GR agonist dexamethasone represses SLC7A11 expression in multiple cell types, from epithelial cells to astrocytes.
View Article and Find Full Text PDFRedox Biol
August 2025
Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, No.119 South 4th Ring Road West, Beijing, China; Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China; Beijing Engineering Research Center of Target
Glioma patients will inevitably develop resistance to temozolomide (TMZ) leading to tumor recurrence. By comparing genomic differences between primary and recurrent glioma patients, Thioredoxin reductase 1 (TrxR1) was identified as a crucial role in TMZ resistance. Glioma cells elevate the expression level of TXNRD1 to against TMZ-induced reactive oxygen species (ROS), thereby conferring TMZ resistance.
View Article and Find Full Text PDFEur J Med Chem
September 2025
Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland. Electronic address:
PARP10 is a potential drug target due to its overexpression in several cancer types and its roles in DNA repair mechanisms and tumorigenesis. In this study, we performed an optimization campaign on our earlier compounds based on a 2,3-dihydrophthalazine-1,4-dione scaffold which emerged with dual PARP10 and PARP15 inhibitory activity. The specific aim was to improve the potency and selectivity towards PARP10.
View Article and Find Full Text PDF