Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The morphological alterations of human cutaneous normal scar were quantitatively analyzed using multiphoton microscopy (MPM) based on two-photon excited fluorescence and second harmonic generation. High-contrast, high-resolution images of normal scar and uninjured skin were obtained for comparison. In addition, some quantitative parameters have been extracted to quantitatively discriminate between normal scar and uninjured skin. The MPM combined with quantitative method enable a better understanding of microstructual alterations of the epidermis, elastic fiber, and collagen in normal scar. It may lead the way to making know the mechanism of normal scar formation and identifying feasible therapeutic options.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbio.200910058 | DOI Listing |