98%
921
2 minutes
20
We report on the reactions of neutral radical species [OH, Cl, O(3P), H], generated in a typical atmospheric pressure ionization (API) source upon irradiation of the sample gases with either 193 nm laser radiation or 124 nm VUV light, the latter commonly used in atmospheric pressure photoionization (APPI). The present investigations focus on the polycyclic aromatic hydrocarbon pyrene as representative of the aromatic compound class. Experimental results are supported by computational methods: simple kinetic models are used to estimate the temporal evolution of the concentrations of reactants, intermediates, and final products, whereas density functional theory (DFT) energy calculations are carried out to further elucidate the proposed reaction pathways. The neutral radicals are generated upon photolysis of background water and oxygen always present in appreciable mixing ratios in typical API sources. Substantial amounts of oxygenated analyte product ions are observed using both techniques. In contrast, upon atmospheric pressure laser ionization (APLI) with 248 nm radiation, oxygenated products are virtually absent. In addition, kinetic data evaluation yielded a bimolecular rate constant of k = (1.9 +/- 0.9) x 10(-9) cm3 molecule(-1) s(-1) for the reaction of the pyrene radical cation with OH radicals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jasms.2009.06.014 | DOI Listing |
J Am Chem Soc
September 2025
Department of Chemical Engineering, National Taiwan University, Taipei 106319, Taiwan.
To address the increasingly limited water availability, using metal-organic frameworks (MOFs) to capture atmospheric water vapor as usable resources has emerged as a promising strategy. The adsorption characteristics of MOFs as well as their step pressure (i.e.
View Article and Find Full Text PDFJ Mass Spectrom
October 2025
Department of Chemistry and Technology of Drugs, "Sapienza" University of Rome, Rome, Italy.
Ionic liquids (ILs) are a class of organic salts with melting points below 100°C. Owing to their unique chemical and physical properties, they are used as solvents and catalysts in various chemical transformations, progressively replacing common volatile organic solvents (VOCs) in green synthetic applications. However, their intrinsic ionic nature can restrict the use of mass spectrometric techniques to monitor the time progress of a reaction occurring in an IL medium, thus preventing one from following the formation of the reaction products or intercepting the reaction intermediates.
View Article and Find Full Text PDFNat Commun
September 2025
State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China.
Rising atmospheric vapor pressure deficit (VPD)-a measure of atmospheric dryness, defined as the difference between saturated vapor pressure (SVP) and actual vapor pressure (AVP)-has been linked to increasing daily mean near-surface air temperatures since the 1980s. However, it remains unclear whether the faster increases in daily maximum temperature (T) relative to daily minimum temperature (T) have contributed to rising VPD. Here, we show that the faster rise in T compared with T over land has intensified VPD from 1980 to 2023.
View Article and Find Full Text PDFJ Environ Manage
September 2025
State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
Dissolved oxygen (DO) is a key water quality indicator reflecting river health. Modeling and understanding the spatiotemporal dynamics of DO and its influencing factors are crucial for effective river management. Machine learning (ML) models have gained popularity in water quality prediction; however, their accuracy strongly depends on the predictor variables.
View Article and Find Full Text PDFLangmuir
September 2025
Product & Process Engineering, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, 2629 HZ Delft, The Netherlands.
Noble metal nanoparticles (NPs), particularly platinum (Pt), are widely used in heterogeneous catalysis due to their exceptional activity. However, controlling their size and preventing sintering during synthesis remains a major challenge, especially when aiming for high dispersion and stability on supports such as graphene. Atomic layer deposition (ALD) has emerged as a promising method to address these issues, yet conventional processes often lead to broad particle size distributions (PSDs).
View Article and Find Full Text PDF