Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
A gravity-driven particle feeder has been modified to achieve sustained operation at steady rates. Particle reservoirs and rod for controlling the nozzle opening are completely redesigned. Particle attrition and rod wobbling are the two main contributors to the feed instabilities. They, in turn, are affected by the height of the particle bed, particle contact time with the moving rod, strength of the magnetic field, and the weight, shape, and position of the rod in the magnetic field. A secondary reservoir minimizes the residence time of particles in the main reservoir. Its shape, orientation, and connection with the main reservoir have profound influences on the feeding stabilities. Tests have been conducted with particles of different types, sizes, and feed rates; results showed good long-term and short-term stabilities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.3176465 | DOI Listing |