A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Acoustic sleepiness detection: framework and validation of a speech-adapted pattern recognition approach. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This article describes a general framework for detecting sleepiness states on the basis of prosody, articulation, and speech-quality-related speech characteristics. The advantages of this automatic real-time approach are that obtaining speech data is nonobstrusive and is free from sensor application and calibration efforts. Different types of acoustic features derived from speech, speaker, and emotion recognition were employed (frame-level-based speech features). Combing these features with high-level contour descriptors, which capture the temporal information of frame-level descriptor contours, results in 45,088 features per speech sample. In general, the measurement process follows the speech-adapted steps of pattern recognition: (1) recording speech, (2) preprocessing, (3) feature computation (using perceptual and signal-processing-related features such as, e.g., fundamental frequency, intensity, pause patterns, formants, and cepstral coefficients), (4) dimensionality reduction, (5) classification, and (6) evaluation. After a correlation-filter-based feature subset selection employed on the feature space in order to find most relevant features, different classification models were trained. The best model-namely, the support-vector machine-achieved 86.1% classification accuracy in predicting sleepiness in a sleep deprivation study (two-class problem, N=12; 01.00-08.00 a.m.).

Download full-text PDF

Source
http://dx.doi.org/10.3758/BRM.41.3.795DOI Listing

Publication Analysis

Top Keywords

pattern recognition
8
speech
6
features
6
acoustic sleepiness
4
sleepiness detection
4
detection framework
4
framework validation
4
validation speech-adapted
4
speech-adapted pattern
4
recognition approach
4

Similar Publications