Ten1p promotes the telomeric DNA-binding activity of Cdc13p: implication for its function in telomere length regulation.

Cell Res

The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, The Graduate School of Chinese Academy of Sciences, Shanghai, China.

Published: July 2009


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In Saccharomyces cerevisiae, the essential gene CDC13 encodes a telomeric single-stranded DNA-binding protein that interacts with Stn1p and Ten1p genetically and physically, and is required for telomere end protection and telomere length control. The molecular mechanism by which Ten1 participates in telomere length regulation and chromosome end protection remains elusive. In this work, we observed a weak interaction of Cdc13p and Ten1p in a gel-filtration analysis using purified recombinant Cdc13p and Ten1p. Ten1p itself exhibits a weak DNA-binding activity, but enhances the telomeric TG(1-3) DNA-binding ability of Cdc13p. Cdc13p is co-immunoprecipitated with Ten1p. In the mutant ten1-55 or ten1-66 cells, the impaired interaction between Ten1p and Cdc13p results in much longer telomeres, as well as a decreased association of Cdc13p with telomeric DNA. Consistently, the Ten1-55 and Ten1-66 mutant proteins fail to stimulate the telomeric DNA-binding activity of Cdc13p in vitro. These results suggest that Ten1p enhances the telomeric DNA-binding activity of Cdc13p to negatively regulate telomere length.

Download full-text PDF

Source
http://dx.doi.org/10.1038/cr.2009.67DOI Listing

Publication Analysis

Top Keywords

dna-binding activity
16
telomere length
16
telomeric dna-binding
12
activity cdc13p
12
cdc13p
9
ten1p
8
length regulation
8
cdc13p ten1p
8
enhances telomeric
8
ten1-55 ten1-66
8

Similar Publications

The synthesis of -tetrakis(3,4,5-trimethoxyphenyl)porphyrin [HT(3,4,5-OCH)PP] and cobalt(II) -tetrakis(3,4,5-trimethoxyphenyl)porphyrin [Co(T(3,4,5-OCH)PP)] has been successfully accomplished. The oxidation properties of [Co(T(3,4,5-OCH)PP)] have been assessed through UV-vis, NMR, and EPR techniques. It can be seen in the UV-vis spectrum that adding SbCl caused extra peaks to appear at 674 nm, which means that a π-cation radical was formed.

View Article and Find Full Text PDF

The RecBC complex protects single-stranded DNA gaps during lesion bypass.

Proc Natl Acad Sci U S A

September 2025

Cancer Research Center of Marseille: Team DNA Damage and Genome Instability|CNRS, Inserm, Institut Paoli-Calmettes, Aix Marseille Université, Marseille 13009, France.

Following encounter with an unrepaired DNA lesion, replication is halted and can restart downstream of the lesion leading to the formation of a single-stranded DNA (ssDNA) gap. To complete replication, this ssDNA gap is filled in by one of the two lesion tolerance pathways: the error-prone Translesion Synthesis (TLS) or the error-free Homology Directed Gap Repair (HDGR). In the present work, we evidence a role for the RecBC complex distinct from its canonical function in homologous recombination at DNA double strand breaks.

View Article and Find Full Text PDF

CpG-A induces liquid-liquid phase separation of HMGB1 to activate the RAGE-mediated inflammatory pathway.

Proc Natl Acad Sci U S A

September 2025

State Key Laboratory of Green Biomanufacturing, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.

High-mobility group box protein 1 (HMGB1) is a chromatin-associated nonhistone protein widely distributed in the nucleus of eukaryotic cells. It is transported extracellularly as a proinflammatory mediator or late warning protein to induce immune and inflammatory reactions upon stimuli such as microbial infection. Here, we have found that HMGB1 directly interacts with bacterial DNA analogue CpG-A in the extracellular environment to undergo liquid-liquid phase separation (LLPS) via its positively charged DNA-binding domain.

View Article and Find Full Text PDF

The role of absent in melanoma 2 (AIM2) in cardiovascular diseases.

Inflamm Res

September 2025

Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, 200040, China.

Cardiovascular diseases (CVDs) are a group of conditions that significantly affect human health and are among the leading causes of death and disability worldwide. Clinical trials and basic research have demonstrated that inflammation plays a pivotal role in the development of CVDs. The inflammasome is a critical component of the innate immune system, involved in various inflammatory responses to pathogens and tissue damage.

View Article and Find Full Text PDF

Human cytomegalovirus (HCMV) infects up to 80% of the world's population. Here, we show that HCMV infection leads to widespread changes in human chromatin accessibility and chromatin looping, with hundreds of thousands of genomic regions affected 48 hr after infection. Integrative analyses reveal HCMV-induced perturbation of Hippo signaling through drastic reduction of TEAD1 transcription factor activity.

View Article and Find Full Text PDF