Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cyclic stretch (CS) mediates different cellular functions in vascular smooth muscle cells and involves in neointimal hyperplasia and subsequent atherosclerosis of vein grafts. Here, we investigated whether CS can modulate stromal cell-derived factor-1alpha (SDF-1alpha)/CXCR4 axis in human saphenous vein smooth muscle cells. We found CS induced the upregulation of SDF-1alpha and CXCR4 in human saphenous vein smooth muscle cells in vitro, which was dependent on PI3K/Akt/mTOR pathway. Furthermore, CS augmented human saphenous vein smooth muscle migration and focal adhesion kinase (FAK) activation by PI3K/Akt/mTOR pathway. Interestingly, the upregulation of SDF-1alpha/CXCR4 axis was instrumental in CS-induced saphenous vein smooth muscle cell migration and FAK activation, as showed by AMD3100, an inhibitor of SDF-1alpha/CXCR4 axis, partially but significantly blocked the CS-induced cellular effects. Thus, those data suggested SDF-1alpha/CXCR4 axis involves in CS-mediated cellular functions in human saphenous vein smooth muscle cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2009.06.025DOI Listing

Publication Analysis

Top Keywords

smooth muscle
28
saphenous vein
24
vein smooth
24
sdf-1alpha/cxcr4 axis
20
human saphenous
20
muscle cells
20
cyclic stretch
8
axis human
8
cellular functions
8
pi3k/akt/mtor pathway
8

Similar Publications

Vascular sites have distinct susceptibility to atherosclerosis and aneurysm, yet the epigenomic and transcriptomic underpinning of vascular site-specific disease risk is largely unknown. Here, we performed single-cell chromatin accessibility (scATACseq) and gene expression profiling (scRNAseq) of mouse vascular tissue from three vascular sites. Through interrogation of epigenomic enhancers and gene regulatory networks, we discovered key regulatory enhancers to not only be cell type, but vascular site-specific.

View Article and Find Full Text PDF

Intestinal dysmotility is a major complication that significantly impacts the prognosis of acute pancreatitis (AP). The neuronal nitric oxide synthase (nNOS) -expressing neurons within the enteric nervous system promote intestinal relaxation via the release of nitric oxide (NO). As the rate-limiting enzyme of NO synthesis, nNOS directly regulates NO production, thereby modulating intestinal motility.

View Article and Find Full Text PDF

Metformin attenuates coal dust nanoparticle-induced pulmonary fibrosis by modulating inflammation and epithelial-mesenchymal transition.

Int Immunopharmacol

September 2025

The First Hospital of Anhui University of Science and Technology, Huainan 232000, China; Bengbu Medical University, Bengbu 233030, China. Electronic address:

Coal worker pneumoconiosis is an occupational pulmonary fibrosis (PF) caused by prolonged exposure to respirable coal dust (CD), with limited therapeutic options. Here, we explored the antifibrotic effects of metformin (Met) in CD-nanoparticle (CD-NP)-induced PF, focusing on its preventive and therapeutic potential. In vivo, Met was administered at different doses (low: 31.

View Article and Find Full Text PDF

Small Interfering RNA Therapy Targeting the Long Noncoding RNA SMILR for Therapeutic Intervention in Coronary Artery Bypass Graft Failure.

JACC Basic Transl Sci

September 2025

BHF Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom; Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, the Netherlands. Electronic address: andy.bak

Coronary artery bypass graft (CABG) surgery remains the gold standard of care to prevent myocardial ischemia in patients with advanced atherosclerosis; however, poor long-term graft patency remains a considerable and long-standing problem. Excessive vascular smooth muscle cell (SMC) proliferation in the grafted tissue is recognized as central to late CABG failure. We previously identified SMILR, a human-specific SMC-enriched long noncoding RNA that drives SMC proliferation, suggesting that targeting SMILR expression could be a novel way to prevent neointima formation, and thus CABG failure.

View Article and Find Full Text PDF

Atherosclerosis (AS) is a chronic inflammatory disease driven by endothelial dysfunction, vascular smooth muscle cell proliferation, and insufficient resolution of inflammation. Nitric oxide (NO) plays a crucial role in vascular homeostasis by promoting endothelial cell proliferation, maintaining endothelial integrity, suppressing smooth muscle cell hyperplasia, and exerting potent anti-inflammatory effects. However, clinical application of NO is hindered by its short half-life, lack of targeting, and uncontrolled release.

View Article and Find Full Text PDF