Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Using the three-dimensional (3D) finite-difference time-domain (FDTD) method, we have investigated in detail the optical properties of a two-dimensional (2D) photonic crystal (PC) surface-emitting laser having a square-lattice structure. In this study we perform the 3D-FDTD calculation for the structure of an actual fabricated device. The device is based on bandedge resonance, and four band edges are present at the corresponding band edge point. For these band edges, we calculate the quality (Q) factor. The results show that the Q factor of a resonant mode labeled A1 is larger than that of other resonant modes; that is, lasing occurs easily in mode A1. The device can thus achieve single-mode lasing oscillation. To increase the Q factor, we also consider the optimization of device parameters. The results provide important guidelines for device fabrication.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/opex.13.002869 | DOI Listing |