Both compensation and recovery of skilled reaching following small photothrombotic stroke to motor cortex in the rat.

Exp Neurol

Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta, Canada, T1K 3M4.

Published: July 2009


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Large lesions produced by stroke to the forelimb region of motor cortex of the rat feature post-stroke improvement that in the main is due to compensation. The present study describes both recovery and compensation of forelimb use in a reach-to-eat (skilled reaching) task following small photothrombotic stroke. The rats were pretrained before stroke, and then assessed using endpoint measures and biometric movement analysis during rehabilitation in the acute and chronic post-stroke periods. Histological and MRI analysis indicated that the stroke consisted of a small lesion surrounded by cortex featuring scattered cell loss, likely of the large pyramidal cells that characterize the forelimb region of motor cortex. The stroke reduced reaching success, especially on the most demanding measure of success on first reach attempts, in the acute period, but with rehabilitation, performance returned to pre-stroke levels. Reach movements as assessed by biometric measures were severely impaired acutely but displayed significant recovery chronically although this recovery was not complete. The results suggest that not only do rats show post-stroke compensation in skilled reaching but they can also display functional recovery. It is suggested that recovery is mediated by the spared neurons in the peri-infarct region of forelimb motor cortex. The results demonstrate the utility of a small lesion model for studying post-stroke neural and behavioral change and support the view that optimal post-stroke treatment should be directed toward limiting tissue loss.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.expneurol.2009.04.021DOI Listing

Publication Analysis

Top Keywords

motor cortex
16
skilled reaching
12
small photothrombotic
8
photothrombotic stroke
8
cortex rat
8
forelimb region
8
region motor
8
small lesion
8
stroke
6
cortex
5

Similar Publications

Parkinson's disease (PD) is characterized by impairments in motor control following the degeneration of dopamine-producing neurons located in the substantia nigra pars compacta. Environmental pesticides such as Paraquat (PQ) and Maneb (MB) contribute to the onset of PD by inducing oxidative stress (OS). This study evaluated the therapeutic efficacy of moderate physical activity (PA) on both motor and non-motor symptoms in a Wistar rat model of Paraquat and Maneb (PQ/MB) induced PD.

View Article and Find Full Text PDF

This case study reports the first documented use of stereoelectroencephalography (SEEG)-guided radiofrequency thermocoagulation (RFTC) to treat refractory status epilepticus (RSE). A 33-year-old woman with drug-resistant epilepsy and recurrent RSE underwent SEEG to define her epileptogenic zone. A new RSE started shortly before and continued during the SEEG exploration, being unresponsive to multiple antiseizure medications, vagal nerve stimulation, and corticosteroid therapy.

View Article and Find Full Text PDF

Primate lateral intraparietal area (LIP) has been directly linked to perceptual categorization and decision-making. However, the intrinsic LIP circuitry that gives rise to the flexible generation of motor responses to sensory instruction remains unclear. Using retrograde tracers, we delineate two distinct operational compartments based on different intrinsic connectivity patterns of dorsal and ventral LIP.

View Article and Find Full Text PDF

Transcranial temporal interference stimulation (tTIS) has recently emerged as a non-invasive neuromodulation method aimed at reaching deeper brain regions than conventional techniques. However, many questions about its effects remain, requiring further experimental studies. This review consolidates the experimental literature on tTIS's effects in the human brain, clarifies existing evidence, identifies knowledge gaps, and proposes future research directions to evaluate its potential.

View Article and Find Full Text PDF