98%
921
2 minutes
20
Background: Non-human primates are valuable models for the study of insulin resistance and human obesity. In baboons, insulin sensitivity levels can be evaluated directly with the euglycemic clamp and is highly predicted by adiposity, metabolic markers of obesity and impaired glucose metabolism (i.e. percent body fat by DXA and HbA1c). However, a simple method to screen and identify obese insulin resistant baboons for inclusion in interventional studies is not available.
Methods: We studied a population of twenty baboons with the euglycemic clamp technique to characterize a population of obese nondiabetic, insulin resistant baboons, and used a multivariate linear regression analysis (adjusted for gender) to test different predictive models of insulin sensitivity (insulin-stimulated glucose uptake = Rd) using abdominal circumference and fasting plasma insulin. Alternatively, we tested in a separate baboon population (n = 159), a simpler model based on body weight and fasting plasma glucose to predict the whole-body insulin sensitivity (Rd/SSPI) derived from the clamp.
Results: In the first model, abdominal circumference explained 59% of total insulin mediated glucose uptake (Rd). A second model, which included fasting plasma insulin (log transformed) and abdominal circumference, explained 64% of Rd. Finally, the model using body weight and fasting plasma glucose explained 51% of Rd/SSPI. Interestingly, we found that percent body fat was directly correlated with the adipocyte insulin resistance index (r = 0.755, p < 0.0001).
Conclusion: In baboons, simple morphometric measurements of adiposity/obesity, (i.e. abdominal circumference), plus baseline markers of glucose/lipid metabolism, (i.e. fasting plasma glucose and insulin) provide a feasible method to screen and identify overweight/obese insulin resistant baboons for inclusion in interventional studies aimed to study human obesity, insulin resistance and type 2 diabetes mellitus.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2674590 | PMC |
http://dx.doi.org/10.1186/1475-2840-8-22 | DOI Listing |
Eur J Nutr
September 2025
Institute of Public Health and Clinical Nutrition, University of Eastern Finland, PO Box 1627, 70211, Kuopio, Finland.
Purpose: To investigate how a group-based lifestyle intervention affects food choices and if the dietary patterns at the end of the intervention are associated with incidence type 2 diabetes (T2D). We also investigated if the possible associations between diet and T2D risk were modified by the genetic risk for T2D.
Methods: Participants in the T2D-GENE study were men with prediabetes aged 50-75 years, body mass index ≥ 25 kg/m, belonging in either low or high genetic risk score (GRS) tertile for T2D.
PLoS One
September 2025
Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
Background: The prevalence of Metabolic Syndrome (MetS) increases with aging, significantly contributing to the rising burden of non-communicable diseases (NCDs). This study aimed to investigate over-time changes in the prevalence of MetS and its components among the elderly population of Iran.
Methods: We analyzed data from the 2016 and 2021 national STEPwise approach to non-communicable disease risk factor Surveillance (STEPS) for participants aged ≥65 who completed all three survey steps (questionnaire-based assessments, physical measurements, and laboratory tests) with no missing data on MetS components.
BackgroundRAY1216 is an alpha-ketoamide-based peptide inhibitor of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) major protease (M). This study evaluated the absorption, distribution, metabolism and excretion of [C]-labelled RAY1216 by oral administration.Research design and methodsThis phase Ι study was designed to assess the pharmacokinetics, mass balance and metabolic pathways in 6 healthy Chinese adult men after a single fasting oral administration of 240 mL (containing 400 mg/100 μCi) [C] RAY1216.
View Article and Find Full Text PDFNutr J
September 2025
Department of Life Sciences, Division of Food and Nutrition Science, Chalmers University of Technology, Gothenburg, 412 96, Sweden.
Background: Avenanthramides (AVAs) and Avenacosides (AVEs) are unique to oats (Avena Sativa) and may serve as biomarkers of oat intake. However, information regarding their validity as food intake biomarkers is missing. We aimed to investigate critical validation parameters such as half-lives, dose-response, matrix effects, relative bioavailability under single dose, and in relation to the abundance of Feacalibacterium prausnitzii, and under repeated dosing, to understand the potential applications of AVAs and AVEs as biomarkers of oat intake.
View Article and Find Full Text PDF