98%
921
2 minutes
20
The mammalian thalamus is located in the diencephalon and is composed of dozens of morphologically and functionally distinct nuclei. The majority of these nuclei project axons to the neocortex in unique patterns and play critical roles in sensory, motor, and cognitive functions. It has been assumed that the adult thalamus is derived from neural progenitor cells located within the alar plate of the caudal diencephalon. Nevertheless, how a distinct array of postmitotic thalamic nuclei emerge from this single developmental unit has remained largely unknown. Our recent studies found that these thalamic nuclei are in fact derived from molecularly heterogeneous populations of progenitor cells distributed within at least two distinct progenitor domains in the caudal diencephalon. In this study, we investigated how such molecular heterogeneity is established and maintained during early development of the thalamus and how early signaling mechanisms influence the formation of postmitotic thalamic nuclei. By using mouse genetics and in utero electroporation, we provide evidence that Sonic hedgehog (Shh), which is normally expressed in ventral and rostral borders of the embryonic thalamus, plays a crucial role in patterning progenitor domains throughout the thalamus. We also show that increasing or decreasing Shh activity causes dramatic reorganization of postmitotic thalamic nuclei through altering the positional identity of progenitor cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2718849 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.0656-09.2009 | DOI Listing |
J Neurosci
September 2025
Lendület Laboratory of Thalamus Research, HUN-REN Institute of Experimental Medicine; Budapest, Hungary
The paraventricular thalamic nucleus (PVT) integrates subcortical signals related to arousal, stress, addiction, and anxiety with top-down cortical influences. Increases or decreases in PVT activity exert profound, long-lasting effects on behavior related to motivation, addiction and homeostasis. Yet the sources of its subcortical excitatory and inhibitory afferents, their distribution within the PVT, and their integration with layer-specific cortical inputs remain unclear.
View Article and Find Full Text PDFBrain Behav
September 2025
Tongde Hospital of Zhejiang Province Affiliated to Zhejiang Chinese Medical University(Tongde Hospital of Zhejiang Province), Hangzhou, China.
Background: Mental disorders frequently co-occur with pain, yet pain mechanisms in non-peripheral etiologies (e.g., chronic psychological stress) remain underexplored.
View Article and Find Full Text PDFTremor Other Hyperkinet Mov (N Y)
September 2025
Movement Disorders and Neurodegenerative Diseases Unit, Hospital Civil de Guadalajara "Fray Antonio Alcalde", Guadalajara, Mexico.
Clinical Vignette: RNA polymerase III subunit A (POLR3A) related disorders are a group of heterogeneous diseases with a recessive autosomic inheritance. These disorders manifest with distinct clinical features like ataxia, spasticity, hypodontia, hypogonadism, mental retardation and progressive motor decline.
Clinical Dilemma: POLR3A gene mutation can manifest with parkinsonism, dystonia, ataxia and tremor.
Nat Commun
September 2025
Department of Medical Physics and Biomedical Engineering, University College London, London, UK.
We introduce an advanced transcranial ultrasound stimulation (TUS) system for precise deep brain neuromodulation, featuring a 256-element helmet-shaped transducer array (555 kHz), stereotactic positioning, individualised planning, and real-time fMRI monitoring. Experiments demonstrated selective modulation of the lateral geniculate nucleus (LGN) and connected visual cortex regions. Participants showed significantly increased visual cortex activity during concurrent TUS and visual stimulation, with high cross-individual reproducibility.
View Article and Find Full Text PDFJ Clin Neurophysiol
July 2025
Department of Pediatrics, Division of Pediatric Neurology, Childrens Medical Center Dallas, UTSW, Dallas, Texas, U.S.A.
Open label use of therapies with adult indications raises unique challenges in pediatric DRE. The following review details the landscape of pediatric intracranial neuromodulation. Initially, I discuss available evidence in pediatric neuromodulation while detailing the only randomized clinical trial in a pediatric developmental and epileptic encephalopathy.
View Article and Find Full Text PDF