A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Dynamic simulations of single-molecule enzyme networks. | LitMetric

Dynamic simulations of single-molecule enzyme networks.

J Phys Chem B

Department of Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands.

Published: April 2009


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Along with the growth of technologies allowing accurate visualization of biochemical reactions to the scale of individual molecules has arisen an appreciation of the role of statistical fluctuations in intracellular biochemistry. The stochastic nature of metabolism can no longer be ignored. It can be probed empirically, and theoretical studies have established its importance. Traditional methods for modeling stochastic biochemistry are derived from an elegant and physically satisfying theory developed by Gillespie. However, although Gillespie's algorithm and its derivatives efficiently model small-scale systems, complex networks are harder to manage on easily available computer systems. Here we present a novel method of simulating stochastic biochemical networks using discrete events simulation techniques borrowed from manufacturing production systems. The method is very general and can be mapped to an arbitrarily complex network. As an illustration, we apply the technique to the glucose phosphorylation steps of the Embden-Meyerhof-Parnas pathway in E. coli . We show that a deterministic version of the discrete event simulation reproduces the behavior of an analogous deterministic differential equation model. The stochastic version of the same model predicts that catastrophic bottlenecks in the system are more likely than one would expect from deterministic theory.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp807520fDOI Listing

Publication Analysis

Top Keywords

dynamic simulations
4
simulations single-molecule
4
single-molecule enzyme
4
enzyme networks
4
networks growth
4
growth technologies
4
technologies allowing
4
allowing accurate
4
accurate visualization
4
visualization biochemical
4

Similar Publications