98%
921
2 minutes
20
Background, Aim And Scope: For reliable environmental risk assessment of pollutants, knowledge on the effects at different levels of biological organisation is needed. During the early days of biomarker research in environmental studies approximately two decades ago, biochemical biomarkers were considered as the most promising tool for such purposes. Among these, three enzymes have often been studied: catalase (CAT), glutathione S-transferase (GST) and cholinesterase (ChE). However, despite their intensive research, their measurements in invertebrates have not been commonly applied in environmental risk assessment (ERA) or for regulatory purposes.
Main Features: In the present review, we summarise our past experiences in biochemical biomarker research in two crustacean species: water flea Daphnia magna and terrestrial isopod Porcellio scaber. This is to orientate their use and to provide recommendations for the use of novel biomarkers in environmental studies, such as proteomic or genomic responses.
Results And Discussion: We assessed the intrinsic properties of biochemical biomarkers CAT, GST and ChE in the D. magna and the isopod P. scaber. It was found that they are not in agreement with the expectations that were previously given for their use in environmental studies. To advance their use in environmental risk assessment, we suggest that based on their properties, their role should be more specifically defined. ERA includes several distinct steps, among them hazard identification, effect assessment and finally risk characterisation, each of which requires a different type of toxicity data. We recommend that the use of biochemical markers is most appropriate for hazard identification because this is a procedure whose purpose is to characterise the potential hazard of the substance in question and is more flexible in terms of using different tools. Furthermore, our results imply that biochemical markers are not always more sensitive than whole-organism responses, as was anticipated. Their sensitivity depends on the mode of action, duration of exposure and test species. Therefore, we suggest that combining both a battery of biomarkers from different levels of biological organisation and an array of biomarkers within a single level could identify hazard adequately.
Conclusions: The lesson learnt from biochemical biomarkers in environmental studies utilizing crustacean model species is that, for successful application of each group of biomarkers, their intrinsic properties are needed to be known before an (eco)toxicity study is designed. We suggest that a substantial body of experience obtained with biochemical biomarkers should be exploited to new emerging biomarkers in environmental studies in order to facilitate their application.
Recommendations And Perspectives: The future of biomarkers lies in a combination of traditional biochemical and new-generation biomarkers. The latter are not only a potential replacement for existing biomarkers but will also provide new knowledge which might encourage renewed research and development of traditional biomarkers. For research purposes, complete ecotoxicity information should include contributions from molecular fingerprint of an organism, as well as whole organism, population and ecosystem responses. Still, the type of biomarkers used for routine purposes will depend on their reproducibility, their ease of use, robustness, affordability of the methodology and the type of chemicals, organisms and ecosystem of interest.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-009-0112-x | DOI Listing |
Clin Oral Investig
September 2025
Department of Periodontics, Saveetha Dental College, Saveetha Institute of Medical and Technology Sciences, SIMATS, Saveetha University, Chennai, Tamil Nadu, India.
Objectives: This study aims to assess periodontal and biochemical parameters and evaluate the salivary Protectin D1 levels in periodontitis patients with and without metabolic syndrome after non-surgical periodontal therapy.
Materials And Methods: Forty patients were categorized into two groups: 20 patients in Group P (systemically healthy patients with stage II/III grade B periodontitis) and 20 patients in Group P+MS (patients with stage II/III grade B periodontitis and metabolic syndrome). Parameters including age, gender, height, weight, body mass index, waist circumference, socio-economic status, oral hygiene index (OHI), modified gingival index (MGI), probing pocket depth, clinical attachment levels, fasting blood glucose, HDL-c, total triglycerides, and blood pressure were recorded.
Forensic Sci Int
September 2025
Metabolomics Core Facility-MetCore, Vice-Presidency for Research, Universidad de los Andes, Bogotá 111711, Colombia. Electronic address:
Carbon monoxide (CO) poisoning remains a major forensic and public health concern due to its high lethality and diagnostic challenges. Its colorless, odorless nature and the limited reliability of carboxyhemoglobin (COHb) levels-compounded by postmortem changes-complicate toxicological interpretation. This study employed untargeted metabolomics and lipidomics to characterize systemic biochemical alterations in fatal CO poisoning cases.
View Article and Find Full Text PDFPathol Res Pract
September 2025
Adiyaman University, Faculty of Medicine, Department of Anesthesiology and Reanimation, Adiyaman, Turkey. Electronic address:
Aim: This study aims to evaluate the effects of bupivacaine on acute kidney injury (AKI) through kidney function parameters and cardiac tissue damage via TRPM2, HSP70, TLR4, NF-κB, and TNF-α biomarkers.
Material And Method: Male Wistar albino rats were divided into 4 groups, with seven rats in each group: Control group, AKI group (kidney damage induced by glycerol), AKI + L group (group treated with bupivacaine), and L group (group treated with bupivacaine alone). At the end of the experiment, kidney and heart tissues were collected for histological analysis, and serum samples were taken for biochemical analysis.
Trends Endocrinol Metab
September 2025
Department of Biochemical Sciences 'A. Rossi-Fanelli, ' Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy. Electronic address:
Biliverdin reductase-A (BVRA) is a pleiotropic enzyme traditionally known for its antioxidant role in the heme degradation pathway. Recent findings have redefined BVRA as a master regulator of insulin signaling, acting as a kinase, scaffold, and redox-sensitive integrator of metabolic cues. BVRA modulates key nodes of the insulin cascade and sustains mitochondrial and synaptic function.
View Article and Find Full Text PDFNeuron
September 2025
Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland. Electronic address:
Progress in understanding human biology has revealed potential therapeutic targets for brain disorders. Yet, the discovery of new neuroscience drugs is often hampered by the lack of precise translation tools and disease models, resulting in high preclinical and clinical failure rates. To improve success, robust translational foundations linking pharmacological targets to disease phenotypes are essential.
View Article and Find Full Text PDF