Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
We investigate the process of self-assembly, and the resultant structures in composites of silica particles with a hexagonal mesophase of a nonionic surfactant and water. We report a systematic transition in behavior when the particle size is increased relative to the characteristic mesophase spacing. Water dispersible cage-like silsesquioxanes that are molecular analogues of silica particles and are smaller than the mesophase spacing swell the space between the surfactant cylinders. Silica particles comparable to the characteristic hexagonal spacing partition into the hexagonal phase and into strandlike particulate aggregates. Even larger particles phase separate from the hexagonal phase to form particulate strands that organize with a mesh size comparable to the wavelength of visible light. This self-assembly is reversible and the particles disperse by breaking up the aggregates on heating the composite into the isotropic phase. On cooling from the isotropic phase into the hexagonal, the particles are expelled from the growing hexagonal domains and finally impinge to form strandlike aggregates. Unusually, the isotropization temperature is increased in the composites as the particles nucleate the formation of the hexagonal phase.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp810769g | DOI Listing |