Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Open-shell spin-restricted time-dependent density functional theory is applied to explore the spin multiplicity dependence of linear and nonlinear optical properties. An open-shell neutral conjugated system, the C(4)H(4)N radical in the doublet X(2)A(2), quartet X(4)A(2), and sextet X(6)A(1) states, is chosen as a model system to illustrate various aspects of the theory. It is found that irrespective of the exchange-correlation functional employed, the components of the polarizability alpha(-omega,omega) and first hyperpolarizability beta(-2 omega,omega,omega) show very different dependency with respect to the multiplicity, with an increasing trend for higher spin states. This is rationalized by the decrease in conjugation and stability of the system with increasing multiplicity, and by the way the interaction between unpaired electrons and the external field is shielded by remaining electrons of the molecule. The study suggests the applicability of open-shell systems for frequency-dependent nonlinear optical properties and for the possibility of spin control for such properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cphc.200800671 | DOI Listing |