Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Using density functional theory calculations and the extended ab initio atomistic thermodynamics approach, we studied the adsorption of oxygen on the different surface faces, which are involved in the faceting of Ir(210). Constructing the (p,T)-surface phase diagrams of the corresponding surfaces in contact with an oxygen atmosphere, we find that at high temperatures the planar surfaces are stable, while lowering the temperature stabilizes those nano-facets found experimentally. Afterwards, we constructed the (a,T,deltaphi)-phase diagram for Ir(210) in contact with an aqueous electrolyte and found that the same nano-facets should be stable under electrochemical conditions. Motivated by this prediction from theory, experiments were performed using cyclic voltammetry and in-situ scanning tunneling microscopy. The presence of nanofacets for Ir(210) gives rise to a characteristic current-peak in the hydrogen adsorption region for sulfuric acid solution. Furthermore, first results on the electrocatalytic behavior of nano-faceted Ir(210) are presented.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/b802919a | DOI Listing |