Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Three imidazo[1,2-a]pyridine derivatives 3a-c have been synthesized from p38 kinase inhibitor structures and evaluated as anti-apoptosis agents. These drugs were designed to interact with nucleic acids and membrane interactions by varying the chain length in position 6, from hydroxyethylamino (3a), to hydroxybutylamino (3b) and hydroxyhexylamino (3c). First experiments showed that 3a and 3b were insoluble in water while 3c could be solubilized in water despite its partition coefficient (logP=3.2). This latter feature was explained by the formation of a fifth intramolecular cycle thus allowing supramolecular structure formation (NMR and MD calculations). The interactions with membranes have been studied using (1)H, (2)H, (31)P Nuclear Magnetic Resonance (NMR), Electron Spin Resonance (ESR) and High Resolution-Magic Angle Spinning (HR-MAS). Despite the insolubility of 3a and 3b in water, these derivatives could be partially solubilized by synthetic phospholipidic model membranes (small unilamellar vesicles, SUV). (1)H NMR paramagnetic broadening experiments performed on the same models showed that 3a was located in the external layer, probably close to the surface while 3b only formed external superficial adducts. Supplementary (31)P, (2)H NMR and ESR experiments on phospholipid dispersions confirmed the location of 3a close to the polar headgroup of the external layer of the membrane, this resulting in a 2K lowering of the transition temperature. Moreover, no significant interaction was detected on the deep part of the layer ((2)H NMR and 16NS ESR experiments). This binding was also found in the presence of cell cultures, as revealed by HR-MAS NMR experiments. Conversely, no significant interaction with membranes was found with 3b or 3c. From both the unexpected solubility of 3c and 3a interactions with membranes, further chemical modifications were finally proposed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2008.12.026DOI Listing

Publication Analysis

Top Keywords

membrane interactions
8
chain length
8
nmr esr
8
interactions membranes
8
external layer
8
esr experiments
8
nmr
7
experiments
5
physicochemical properties
4
properties membrane
4

Similar Publications

Three antileishmanial compounds incorporating a butylated hydroxytoluene (BHT) moiety and an acrylate-based Michael acceptor scaffold were rationally designed from the lead structures LQFM064 and LQFM332, which feature a chalcone-derived core. Their activities against Leishmania (L.) amazonensis were evaluated.

View Article and Find Full Text PDF

3-O-sulfation of heparan sulfate (HS) is the key determinant for binding and activation of Antithrombin III (AT). This interaction is the basis of heparin treatment to prevent thrombotic events and excess coagulation. Antithrombin-binding HS (HSAT) is expressed in human tissues, but is thought to be expressed in the subendothelial space, mast cells, and follicular fluid.

View Article and Find Full Text PDF

Agonist-induced interaction of G protein-coupled receptors (GPCRs) with β-arrestins (βarrs) is a critical mechanism that regulates the spatiotemporal pattern of receptor localization and signaling. While the underlying mechanism governing GPCR-βarr interaction is primarily conserved and involves receptor activation and phosphorylation, there are several examples of receptor-specific fine-tuning of βarr-mediated functional outcomes. Considering the key contribution of conformational plasticity of βarrs in driving receptor-specific functional responses, it is important to develop novel sensors capable of reporting distinct βarr conformations in cellular context.

View Article and Find Full Text PDF

Oxidative stress and ferroptosis in diabetic cardiomyopathy: mechanistic interplay and therapeutic implications.

Apoptosis

September 2025

The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, 182 Chunhui Road, Longmatan District, Luzhou, 646000, China.

Diabetic cardiomyopathy (DCM) is a severe cardiovascular complication of diabetes mellitus, characterized by pathological changes such as cardiomyocyte hypertrophy, necrosis, and myocardial fibrosis, which can ultimately lead to heart failure. However, its underlying mechanisms remain incompletely understood, limiting the development of effective therapeutic approaches. In recent years, the critical roles of oxidative stress and ferroptosis in the pathogenesis of DCM have attracted increasing attention.

View Article and Find Full Text PDF

Purpose: Taenia pisiformis cysticerci have been reported in the female reproductive tract of rabbits, and this parasitosis is known to alter reproductive behavior and reduce embryo implantation; however, tissue-based studies relating the immune system to the implantation site during infection have not been previously addressed. Therefore, our research provides new information on the interaction between pregnancy and parasitic infection.

Methods: This study evaluated the recruitment of immune cells in uterine tissue during T.

View Article and Find Full Text PDF