98%
921
2 minutes
20
Mice with maternal duplication of proximal Chromosome 11 (MatDp(prox11)), where Meg1/Grb10 is located, exhibit pre- and postnatal growth retardation. To elucidate the responsible imprinted gene for the growth abnormality, we examined the precise structure and regulatory mechanism of this imprinted region and generated novel model mice mimicking the pattern of imprinted gene expression observed in the MatDp(prox11) by deleting differentially methylated region of Meg1/Grb10 (Meg1-DMR). It was found that Cobl and Ddc, the neighboring genes of Meg1/Grb10, also comprise the imprinted region. We also found that the mouse-specific repeat sequence consisting of several CTCF-binding motifs in the Meg1-DMR functions as a silencer, suggesting that the Meg1/Grb10 imprinted region adopted a different regulatory mechanism from the H19/Igf2 region. Paternal deletion of the Meg1-DMR (+/DeltaDMR) caused both upregulation of the maternally expressed Meg1/Grb10 Type I in the whole body and Cobl in the yolk sac and loss of paternally expressed Meg1/Grb10 Type II and Ddc in the neonatal brain and heart, respectively, demonstrating maternalization of the entire Meg1/Grb10 imprinted region. We confirmed that the +/DeltaDMR mice exhibited the same growth abnormalities as the MatDp(prox11) mice. Fetal and neonatal growth was very sensitive to the expression level of Meg1/Grb10 Type I, indicating that the 2-fold increment of the Meg1/Grb10 Type I is one of the major causes of the growth retardation observed in the MatDp(prox11) and +/DeltaDMR mice. This suggests that the corresponding human GRB10 Type I plays an important role in the etiology of Silver-Russell syndrome caused by partial trisomy of 7p11-p13.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/hmg/ddp049 | DOI Listing |
Cell Discov
September 2025
Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.
Adverse intrauterine environments, such as hyperglycemia, impair sexual reproduction and species continuity, yet the underlying mechanisms remain poorly understood. In this study, we demonstrated that intrauterine hyperglycemia significantly disrupted primordial germ cell (PGC) development, especially in female offspring, thus reducing fertility. Using Oct4-EGFP transgenic mice with intrauterine hyperglycemia exposure, we revealed that hyperglycemia compromised sexually specific chromatin accessibility and DNA methylation reprogramming during PGC development.
View Article and Find Full Text PDFPopulations that colonize islands experience novel selective pressures, fluctuations in size, and changes to their connectivity. Owing to their unique geographic setting, islands can function as natural laboratories in which to examine the interactions between demographic history and natural selection replicated across isolated populations. We used whole genome sequences of wild-caught deer mice ( ) from two islands (Saturna and Pender) and one mainland location (Maple Ridge) in the Gulf Islands region of coastal British Columbia to investigate two primary determinants of genome-wide diversity: chromosomal inversions and non-equilibrium demographic history.
View Article and Find Full Text PDFMater Today Bio
October 2025
School of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, China.
Effective therapies for Glioblastoma (GBM) are often challenging by virtue of the intracranial location of GBM tumors, molecular heterogeneity, high recurrence rate, and overall resistance to treatment. Therefore, we proposed the development of doxorubicin (DOX) loaded molecularly imprinted nanocomposites (DOX@MINPs-TRF/ChO) using transferrin (TRF) and cholesterol (ChO) as dual-template and Cu nanoparticles (Cu@BSNs) as a functional monomer for enhancing the treatment of GBM. The results showed that DOX@MINPs-TRF/ChO specifically and effectively adsorbed TRF in blood circulation and subsequently enhanced the brain tumor targeting capability specific binding with transferrin receptors (TfR) highly expressed on the surface of GL261 cells.
View Article and Find Full Text PDFMol Autism
August 2025
Dept. of Clinical Genetics, Erasmus MC Center of Expertise for Neurodevelopmental Disorders (ENCORE), Erasmus MC, Rotterdam, The Netherlands.
Background: Angelman Syndrome (AS) is a severe neurodevelopmental disorder with only symptomatic treatment currently available. The primary cause of AS is loss of functional UBE3A protein. This can be caused by deletions in the maternal 15q11-q13 region, maternal AS-imprinting center defects (mICD), paternal uniparental disomy of chromosome 15 (UPD) or mutations within the UBE3A gene.
View Article and Find Full Text PDFGenes (Basel)
August 2025
United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan.
Background: Frailty is an aging-associated syndrome involving a loss of physiological reserve and function, with decreased ability to recover from physical and psychosocial stress. However, the etiology and pathogenesis of frailty remain largely unknown.
Aim: This study aimed to investigate key genes involved in frailty pathogenesis, exercise effects, and their contributions.