Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Introduction: Right ventricular (RV) anodal stimulation may occur in cardiac resynchronization therapy defibrillators (CRT-D) when left ventricular (LV) pacing is configured between the LV lead and an electrode on the RV defibrillator lead. RV defibrillator leads can have a dedicated proximal pacing ring electrode (dedicated bipolar) or utilize the distal shocking coil as the proximal pacing electrode (integrated bipolar). This study compares the performance of integrated versus dedicated leads with respect to anodal stimulation incidence, sensing, and inappropriate ventricular tachyarrhythmia detection in patients implanted with CRT-D.

Methods: Two hundred ninety-two patients were randomly assigned to receive dedicated or integrated bipolar RV leads at the time of CRT-D implantation. Patients were followed for 6 months.

Results: Patients with dedicated bipolar RV leads exhibited markedly higher rates of anodal stimulation than did patients with integrated leads. The incidence of anodal stimulation was 64% at implant for dedicated bipolar RV leads compared to 1% for integrated bipolar RV leads. The likelihood of anodal stimulation in patients with dedicated leads fell progressively during the 6-month follow-up (51.5%), but always exceeded the incidence of anodal stimulation in patients with integrated leads (5%). Clinically detectable undersensing and oversensing were very unusual and did not differ significantly between lead designs. There were no inappropriate ventricular tachyarrhythmia detections for either lead type.

Conclusion: Integrated bipolar RV defibrillator leads had a significantly lower incidence of RV anodal stimulation when compared to dedicated bipolar RV defibrillation leads, with no clinically detectable oversensing or undersensing, and with no inappropriate ventricular tachyarrhythmia detections for either lead type.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1540-8159.2008.02197.xDOI Listing

Publication Analysis

Top Keywords

anodal stimulation
28
integrated bipolar
20
dedicated bipolar
16
bipolar leads
16
leads
12
defibrillator leads
12
inappropriate ventricular
12
ventricular tachyarrhythmia
12
stimulation patients
12
incidence anodal
12

Similar Publications

Primary progressive aphasia (PPA) is a neurological syndrome characterized by the gradual deterioration of language capabilities. Due to its neurodegenerative nature, PPA is marked by a continuous decline, necessitating ongoing and adaptive therapeutic interventions. Recent studies have demonstrated that behavioral therapies, particularly when combined with neuromodulation techniques such as transcranial direct current stimulation (tDCS), can improve treatment outcomes, including the long-term maintenance and generalization of therapeutic effects.

View Article and Find Full Text PDF

Background: Age-related declines in dynamic balance and cognitive control increase fall risk in older adults (OA). Non-invasive brain stimulation, such as anodal transcranial direct current stimulation (a-tDCS), may enhance training outcomes. However, it remains unclear whether stimulation over motor or prefrontal regions is more effective for improving dynamic balance training (DBT) in OA.

View Article and Find Full Text PDF

A multi-modal approach for the treatment of non-fluent/agrammatic variant of Primary Progressive Aphasia.

Brain Commun

September 2025

Neuropsychology Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia 25125, Italy.

The non-fluent/agrammatic variant of primary progressive aphasia is a neurodegenerative disorder characterized by effortful language production and impaired comprehension of grammatically complex sentences. Recently, interest in non-pharmacological interventions has increased, particularly regarding techniques that allow for non-invasive brain stimulation, such as transcranial direct current stimulation. The main purpose of this study was to investigate whether the use of anodal transcranial direct current stimulation applied to the dorsolateral prefrontal cortex during individualized language training for 25 min a day at 5 days a week for 2 weeks would lead to significant oral naming improvements in patients with agrammatic variant of primary progressive aphasia.

View Article and Find Full Text PDF

Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that can alter the excitability of targeted brain regions and influence motor learning. For the first experiment, we studied the effects of several individual stimulation montages (2mA) on motor learning in a complex rhythm-timing video game task (n=79, M1 anodal tDCS [M1 a-tDCS], Cerebellar anodal tDCS [CB a-tDCS], Cerebellar cathodal tDCS [CB c-tDCS], and SHAM). Performance was assessed using a performance index (PI) incorporating keystroke timing accuracy, tap distribution ratio, and key error rate.

View Article and Find Full Text PDF

Modulatory effects of transcranial direct current stimulation on sensory gating in Fibromyalgia Syndrome.

Front Psychol

August 2025

Cognitive and Affective Neuroscience and Clinical Psychology, Research Institute of Health Sciences (IUNICS) and Balearic Islands Health Research Institute (IdISBa), University of the Balearic Islands (UIB), Palma, Spain.

Introduction: Several studies have demonstrated a reduced habituation to redundant somatosensory stimulation (sensory gating) in Fibromyalgia Syndrome. Furthermore, anodal transcranial direct current stimulation has been shown to modulate somatosensory processing. The aim of this study was to examine the modulatory effects of anodal transcranial direct current stimulation applied over the left primary somatosensory cortex on sensory gating in Fibromyalgia Syndrome.

View Article and Find Full Text PDF