98%
921
2 minutes
20
The disease protein in frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U) and amyotrophic lateral sclerosis (ALS) was identified recently as the TDP-43 (TAR DNA-binding protein 43), thereby providing a molecular link between these two disorders. In FTLD-U and ALS, TDP-43 is redistributed from its normal nuclear localization to form cytoplasmic insoluble aggregates. Moreover, pathological TDP-43 is abnormally ubiquitinated, hyperphosphorylated, and N-terminally cleaved to generate C-terminal fragments (CTFs). However, the specific cleavage site(s) and the biochemical properties as well as the functional consequences of pathological TDP-43 CTFs remained unknown. Here we have identified the specific cleavage site, Arg(208), of a pathological TDP-43 CTF purified from FTLD-U brains and show that the expression of this and other TDP-43 CTFs in cultured cells recapitulates key features of TDP-43 proteinopathy. These include the formation of cytoplasmic aggregates that are ubiquitinated and abnormally phosphorylated at sites found in FTLD-U and ALS brain and spinal cord samples. Furthermore, we observed splicing abnormalities in a cell culture system expressing TDP-43 CTFs, and this is significant because the regulation of exon splicing is a known function of TDP-43. Thus, our results show that TDP-43 CTF expression recapitulates key biochemical features of pathological TDP-43 and support the hypothesis that the generation of TDP-43 CTFs is an important step in the pathogenesis of FTLD-U and ALS.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2659210 | PMC |
http://dx.doi.org/10.1074/jbc.M809462200 | DOI Listing |
JAMA Neurol
September 2025
Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia.
Importance: Exposure to fine particulate matter air pollution (PM2.5) may increase risk for dementia. It is unknown whether this association is mediated by dementia-related neuropathologic change found at autopsy.
View Article and Find Full Text PDFBrain
September 2025
State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Guangdong Provincial Key Laboratory of Non-human Primate Research, Guangdong-Hong Kong-Macau Institute of CNS Rege
Abnormal accumulation of TAR DNA-binding protein-43 (TDP-43) is a hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Small interfering RNAs (siRNAs) targeting TDP-43 offer potential therapeutic strategies for these diseases. However, efficient and safe delivery of siRNAs to the central nervous system (CNS) remains a critical challenge.
View Article and Find Full Text PDFCell Rep
September 2025
Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA; Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA. Electronic address:
Progranulin-deficient frontotemporal dementia (GRN-FTD) is a major cause of familial FTD with TAR DNA-binding protein 43 (TDP-43) pathology, which is linked to exon dysregulation. However, little is known about this dysregulation in glial and neuronal cells. Here, using splice-junction-covering enrichment probes, we introduce single-nuclei long-read RNA sequencing 2 (SnISOr-Seq2), targeting 3,630 high-interest genes without loss of precision, and complete the first single-cell, long-read-resolved case-control study for neurodegeneration.
View Article and Find Full Text PDFBrain
September 2025
IRCSS Fondazione Santa Lucia, European Center for Brain Research (CERC), Rome 00143, Italy.
Innate immune signaling pathways are hyperactivated in the central nervous system (CNS) of patients with Amyotrophic Lateral Sclerosis (ALS), as well as in preclinical models with diverse causative backgrounds including TDP-43, SOD1, and C9orf72 mutations. This raises an important question of whether these pathways are key pathogenic features of the disease, and whether therapeutic amelioration could be beneficial. Here, we systematically profile Type-I interferon (IFN)-stimulated gene (ISG) expression signatures using a non-biased approach in CNS tissue from a cohort of 36 individuals with ALS, including sporadic ALS (sALS; n=18), genetic ALS caused by (i) a C9orf72 hexanucleotide repeat expansion (C9-ALS; n=11), and (ii) a SOD1 mutation (SOD1-ALS; n=5), alongside age- and sex-matched individuals who died of a non-neurological cause (n=12).
View Article and Find Full Text PDFJ Neurosci
September 2025
Center for Neurodegenerative Disease Research, Dept. Pathology, Perelman School of Medicine at the University of Pennsylvania, 3 Maloney Bldg, 3600 Spruce St, Philadelphia, PA 19140, USA.
Neuronal hyperexcitability is a hallmark of amyotrophic lateral sclerosis (ALS) but its relationship with the TDP-43 aggregates that comprise the predominant pathology in over 90% of ALS cases remains unclear. Emerging evidence indicates that TDP-43 pathology induces neuronal hyperexcitability, which may contribute to excitotoxic neuronal death. To characterize TDP-43 mediated network excitability changes in a disease-relevant model, we performed in vivo continuous electroencephalography monitoring and ex vivo acute hippocampal slice electrophysiology in rNLS8 mice (males and females), which express human TDP-43 with a defective nuclear localization signal (hTDP-43ΔNLS).
View Article and Find Full Text PDF