Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
We demonstrate the prospects of computing two photon absorption cross sections of open-shell systems by applying recently developed spin-restricted time-dependent density functional response theory using the pyrrole radical as an example. The spin multiplicity effects on two photon absorption cross sections of this species are investigated for the doublet, quartet, and sextet states. It is found that irrespective of the exchange-correlation functional employed, the two photon cross sections increase with the increase in spin multiplicity. This result indicates that two photon cross sections of paramagnetic compounds can be controlled by manipulating their spin states and this opens new possibilities for design of hybrid magneto-optical materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.3054708 | DOI Listing |