A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Micromechanical evaluation of mineralized multilayers. | LitMetric

Micromechanical evaluation of mineralized multilayers.

J Biomech

Department of Oral Biomaterials and Technology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan.

Published: December 2008


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The biomechanical stability of osseointegrated implants is of particular importance, especially the stability which is achieved from structural manipulation at the interface between the implant surface and the bone tissues. Nanoscale beta-tricalcium phosphate-immobilized titanium was prepared by discharge into a physiological buffered saline solution. Compared with hydroxyapatite, it has been shown to be effective in generating a bone-like chemical structure on the surface by cooperative interaction between osteoblastic cells and the beta-tricalcium phosphate. The present study, after cell cultivation, investigates the nanostructures and biomechanical property differences of a mineralized layer formed on two samples of nano-calcium phosphate-immobilized titanium. A scanning probe microscope study revealed that the mineralized tissue formed on the beta-tricalcium phosphate samples after 1 week of cell culture showed significantly higher roughness, compared with hydroxyapatite samples. Nanoindentation micromechanical evaluation of the in vitro generated multilayered structures exhibited thicker bone-like mineralized layers on the beta-tricalcium phosphate samples. A successful modification of titanium implants through the cooperative interaction between osteoblastic cells and nano beta-tricalcium phosphate is anticipated.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiomech.2008.09.018DOI Listing

Publication Analysis

Top Keywords

beta-tricalcium phosphate
16
micromechanical evaluation
8
phosphate-immobilized titanium
8
compared hydroxyapatite
8
cooperative interaction
8
interaction osteoblastic
8
osteoblastic cells
8
phosphate samples
8
beta-tricalcium
5
mineralized
4

Similar Publications