Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Some speculate that bioaerosols from land application of biosolids pose occupational risks, but few studies have assessed aerosolization of microorganisms from biosolids or estimated occupational risks of infection. This study investigated levels of microorganisms in air immediately downwind of land application operations and estimated occupational risks from aerosolized microorganisms. In all, more than 300 air samples were collected downwind of biosolids application sites at various locations within the United States. Coliform bacteria, coliphages, and heterotrophic plate count (HPC) bacteria were enumerated from air and biosolids at each site. Concentrations of coliforms relative to Salmonella and concentrations of coliphage relative to enteroviruses in biosolids were used, in conjunction with levels of coliforms and coliphages measured in air during this study, to estimate exposure to Salmonella and enteroviruses in air. The HPC bacteria were ubiquitous in air near land application sites whether or not biosolids were being applied, and concentrations were positively correlated to windspeed. Coliform bacteria were detected only when biosolids were being applied to land or loaded into land applicators. Coliphages were detected in few air samples, and only when biosolids were being loaded into land applicators. In general, environmental parameters had little impact on concentrations of microorganisms in air immediately downwind of land application. The method of land application was most correlated to aerosolization. From this large body of data, the occupational risk of infection from bioaerosols was estimated to be 0.78 to 2.1%/yr. Extraordinary exposure scenarios carried an estimated annual risk of infection of up to 34%, with viruses posing the greatest threat. Risks from aerosolized microorganisms at biosolids land application sites appear to be lower than those at wastewater treatment plants, based on previously reported literature.

Download full-text PDF

Source
http://dx.doi.org/10.2134/jeq2007.0193DOI Listing

Publication Analysis

Top Keywords

land application
28
estimated occupational
12
occupational risks
12
application sites
12
land
10
biosolids
10
occupational risk
8
application
8
microorganisms biosolids
8
air
8

Similar Publications

Microencapsulation alters pyraclostrobin degradation and reshapes soil microbial communities compared to conventional formulations.

J Adv Res

September 2025

State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China. Electronic address: tangtao@za

Introduction: Microencapsulated pyraclostrobin (PYR-CS) has gained widespread adoption in agriculture owing to its extended efficacy and reduced risks for non-target organisms. However, knowledge remains limited regarding its degradation in soil and effects on soil microorganisms.

Objectives: This study investigates the hypothesis that microencapsulation alters pyraclostrobin degradation and reshapes soil microbial communities compared with conventional formulations, including emulsifiable concentrate (PYR-EC) and technical material (PYR-TC).

View Article and Find Full Text PDF

Effective reduction of oceanic plastic pollution requires scalable and objective monitoring methods that go beyond traditional human-based surveys. This review synthesizes recent advances in remote sensing and AI-driven image analysis for detecting macro-plastic litter. Peer-reviewed studies published up to 2024 were systematically selected from the Scopus database, focusing on applications of remote sensing platforms including webcams, drones, balloons, aircraft, and satellites for monitoring plastic litter in coastal, riverine, and other aquatic environments.

View Article and Find Full Text PDF

The application of manure and straw is beneficial for improving the content and stability of DOM in paddy soil.

J Environ Manage

September 2025

College of Resources, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu, 611130, China. Electronic address:

While organic manure application effectively increases soil organic carbon (SOC) content, it may elevate greenhouse gas emissions. Crop straw, a widely available agricultural residue, enhances SOC through gradual decomposition. The effect of organic manure combined with crop straw on the organic carbon components of paddy soil is still unclear.

View Article and Find Full Text PDF

Bioinspired Vacuum Generation via Pressure-to-Vacuum Conversion for Manipulating all Phases of Matter.

Soft Robot

September 2025

Bioinspired Soft Robotics Laboratory, Istituto Italiano di Tecnologia, Genoa, Italy.

Animal diaphragm-lung systems are soft organs that generate a controllable vacuum. Elephants, as rare land animals, can manipulate all three states of matter using their lung-generated vacuum. In soft robotics, however, current vacuum generation relies on rigid components, and no single soft device effectively handles all states of matter.

View Article and Find Full Text PDF

Forests have been increasingly affected by natural disturbances and human activities. These impacts have caused habitat fragmentation and a loss of ecological connectivity. This study examines potential restoration pathways that reconnect the five largest forest cores in the Castilla y León region of Spain.

View Article and Find Full Text PDF