A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

IP(3)R-mediated Ca(2+) release is modulated by anandamide in isolated cardiac nuclei. | LitMetric

IP(3)R-mediated Ca(2+) release is modulated by anandamide in isolated cardiac nuclei.

J Mol Cell Cardiol

Division of Physiology and Pharmacology, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK.

Published: December 2008


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cannabinoids (CBs) are known to alter coronary vascular tone and cardiac performance. They also exhibit cardioprotective properties, particularly in their ability to limit the damage produced by ischaemia reperfusion injury. The mechanisms underlying these effects are unknown. Here we investigate the intracellular localisation of CB receptors in the heart and examine whether they may modulate localised nuclear Ca(2+) release. In isolated cardiac nuclear preparations, expression of both the inositol 1,4,5-trisphosphate receptor type 2 (IP(3)R) and CB receptors (CB(1)R and CB(2)R) was demonstrated by immunoblotting. Both receptors localised to the nucleus and purity of the nuclear preparations was confirmed by co-expression of the nuclear marker protein nucleolin but absence of cytoplasmic actin. To measure effects of IP(3)R and CBR agonists on nuclear Ca(2+) release, isolated nuclei were loaded with Fluo5N-AM. This dye accumulates in the nuclear envelope. Isolated nuclei responded to IP(3) with rapid and transient Ca(2+) release from the nuclear envelope. Anandamide inhibited this IP(3)-mediated release. Preincubation of nuclear preparations with either the CB(1)R antagonist (AM251) or the CB(2)R antagonist (AM630) reversed anandamide-mediated inhibition to 80% and 60% of control values respectively. When nuclei were pre-treated with both CBR antagonists, anandamide-mediated inhibition of IP(3)-induced Ca(2+) release was completely reversed. These results are the first to demonstrate the existence of cardiac nuclear CB receptors. They are also the first to show that anandamide can negatively modulate IP(3)-mediated nuclear Ca(2+) release. As such, this provides evidence for a novel key mechanism underlying the action of CBs and CBRs in the heart.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yjmcc.2008.07.005DOI Listing

Publication Analysis

Top Keywords

ca2+ release
24
nuclear ca2+
12
nuclear preparations
12
nuclear
10
isolated cardiac
8
release isolated
8
cardiac nuclear
8
isolated nuclei
8
nuclear envelope
8
anandamide-mediated inhibition
8

Similar Publications