98%
921
2 minutes
20
The in vivo fate of nanomaterials strongly determines their biomedical efficacy. Accordingly, much effort has been invested into the development of library screening methods to select targeting ligands for a diversity of sites in vivo. Still, broad application of chemical and biological screens to the in vivo targeting of nanomaterials requires ligand attachment chemistries that are generalizable, efficient, covalent, orthogonal to diverse biochemical libraries, applicable under aqueous conditions, and stable in in vivo environments. To date, the copper(I)-catalyzed Huisgen 1,3-dipolar cycloaddition or "click" reaction has shown considerable promise as a method for developing targeted nanomaterials in vitro. Here, we investigate the utility of "click" chemistry for the in vivo targeting of inorganic nanoparticles to tumors. We find that "click" chemistry allows cyclic LyP-1 targeting peptides to be specifically linked to azido-nanoparticles and to direct their binding to p32-expressing tumor cells in vitro. Moreover, "click" nanoparticles are able to stably circulate for hours in vivo following intravenous administration (>5 h circulation time), extravasate into tumors, and penetrate the tumor interstitium to specifically bind p32-expressing cells in tumors. In the future, in vivo use of "click" nanomaterials should expedite the progression from ligand discovery to in vivo evaluation and diversify approaches toward multifunctional nanoparticle development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2538627 | PMC |
http://dx.doi.org/10.1021/bc800077y | DOI Listing |
Stem Cell Rev Rep
September 2025
Paris Cité University, INSERM UMR-S 970, Paris Cardiovascular Research Centre, Paris, France.
Endothelial Colony-Forming Cells (ECFCs) are recognized as key vasculogenic progenitors in humans and serve as valuable liquid biopsies for diagnosing and studying vascular disorders. In a groundbreaking study, Anceschi et al. present a novel, integrative strategy that combines ECFCs loaded with gold nanorods (AuNRs) to enhance tumor radiosensitization through localized hyperthermia.
View Article and Find Full Text PDFJ Assist Reprod Genet
September 2025
Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA.
Purpose: To determine if melatonin-enriched culture media could offset loss of imprinting in mouse concepti.
Methods: Zygotes were cultured to blastocyst stage under optimized conditions in melatonin-supplemented media at either 10 M (MT 10) or 10 M (MT 10), or without supplementation (Culture + embryo transfer, or ET, positive control). Blastocysts were also developed in vivo (ET negative control).
MAGMA
September 2025
Department of Medical Imaging, (766), Radboud University Medical Center, Geert Grooteplein 10Radboudumc, P.O. Box 9101, 6500 HB, Nijmegen, the Netherlands.
Objective: To improve B field homogeneity in prostate MR imaging and spectroscopy using a custom-designed 16-channel external local shim coil array.
Methods: In vivo prostate imaging was performed in seven healthy volunteers (mean age: 40.7 years) without bowel preparation.
J Neural Transm (Vienna)
September 2025
Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, 40139, Italy.
Multisystem proteinopathy 1 (MSP1) is a rare autosomal dominant disorder caused by mutations in the valosin-containing protein (VCP) gene typically presenting with inclusion body myopathy (IBM), Paget's disease of bone (PDB), frontotemporal dementia (FTD), and amyotrophic lateral sclerosis (ALS). Parkinsonism is a rare feature of MSP1, occurring in 3-4% of cases, with limited post-mortem evidence suggesting neuronal synucleinopathy. We report a case of VCP-related parkinsonism providing the first in vivo demonstration of phosphorylated alpha-synuclein deposition in skin biopsy, a highly sensitive and specific in vivo biomarker of synucleinopathy.
View Article and Find Full Text PDFUrolithiasis
September 2025
Department of Urology, Icahn School of Medicine at Mount Sinai, 424 W. 59th Street, Suite 4F, New York, 10019, United States.
Introduction: High intrarenal pressures (IRP) during mini-PCNL have been postulated to result in increased postoperative pain but no studies have evaluated this to our knowledge. We sought to determine if there is a correlation between IRP and immediate postoperative pain when using different tract sizes.
Methods: Patients were enrolled and assigned for standard (s-PCNL, 24fr), suctioning-mini (sm-PCNL, 16fr) and non-suctioning-mini (nsm-PCNL, 17.