Proteomics as a tool for the modelling of biological processes and biomarker development in nutrition research.

Br J Nutr

Division of Vascular Health, Rowett Research Institute, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, United Kingdom.

Published: June 2008


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Nutrition research has slowly started to adopt the proteomics techniques to measure changes in the protein complement of a biological system. This enables modelling of biological processes in response to dietary interventions, as well as the elucidation of novel biomarkers for health or disease that are sensitive to such interventions. There are limited studies on the effect of micronutrients on the proteome, so this review concentrates rather more on dietary intervention studies that have used proteomics (mainly classical 2D gel electrophoresis combined with mass spectrometry) to elucidate changes in pathways that relate to glucose and fatty acid metabolism, oxidative stress, anti-oxidant defence mechanisms and redox status. The ability to measure regulation of more low abundant proteins, such as those involved in inflammatory pathways, as well as the evaluation and validation of newly discovered candidate biomarkers in human biofluids, may depend on the introduction of more quantitative and sensitive methods like multiple reaction monitoring (MRM) and multiplexed immunoassays in nutrition research.

Download full-text PDF

Source
http://dx.doi.org/10.1017/S0007114508006909DOI Listing

Publication Analysis

Top Keywords

modelling biological
8
biological processes
8
proteomics tool
4
tool modelling
4
processes biomarker
4
biomarker development
4
development nutrition
4
nutrition nutrition
4
nutrition slowly
4
slowly started
4

Similar Publications

Background: Genetic modifiers are believed to play an important role in the onset and severity of polycystic kidney disease (PKD), but identifying these modifiers has been challenging due to the lack of effective methodologies.

Methods: We generated zebrafish mutants of IFT140, a skeletal ciliopathy gene and newly identified autosomal dominant PKD (ADPKD) gene, to examine skeletal development and kidney cyst formation in larval and juvenile mutants. Additionally, we utilized ift140 crispants, generated through efficient microhomology-mediated end joining (MMEJ)-based genome editing, to compare phenotypes with mutants and conduct a pilot genetic modifier screen.

View Article and Find Full Text PDF

Background: Active vitamin D metabolites, including 25-hydroxyvitamin D (25D) and 1,25-dihydroxyvitamin D (1,25D), have potent immunomodulatory effects that attenuate acute kidney injury (AKI) in animal models.

Methods: We conducted a phase 2, randomized, double-blind, multiple-dose, 3-arm clinical trial comparing oral calcifediol (25D), calcitriol (1,25D), and placebo among 150 critically ill adult patients at high-risk of moderate-to-severe AKI. The primary endpoint was a hierarchical composite of death, kidney replacement therapy (KRT), and kidney injury (baseline-adjusted mean change in serum creatinine), each assessed within 7 days following enrollment using a rank-based procedure.

View Article and Find Full Text PDF

Cardiac hypertrophy is a common adaptation to cardiovascular stress and often a prelude to heart failure. We examined how S-palmitoylation of the small GTPase, Ras-related C3 botulinum toxin substrate 1 (Rac1), impacts cardiomyocyte stress signaling. Mutation of the cysteine-178 palmitoylation site impaired activation of Rac1 when overexpressed in cardiomyocytes.

View Article and Find Full Text PDF

3-O-sulfation of heparan sulfate (HS) is the key determinant for binding and activation of Antithrombin III (AT). This interaction is the basis of heparin treatment to prevent thrombotic events and excess coagulation. Antithrombin-binding HS (HSAT) is expressed in human tissues, but is thought to be expressed in the subendothelial space, mast cells, and follicular fluid.

View Article and Find Full Text PDF

In the visual cortices, receptive fields (RFs) are arranged in a gradient from small sizes in the center of the visual field to the largest sizes at the periphery. Using functional magnetic resonance imaging (fMRI) mapping of population RFs, we investigated RF adaptation in V1, V2, and V3 in patients after long-term photoreceptor degeneration affecting the central (Stargardt disease [STGD]) and peripheral (Retinitis Pigmentosa [RP]) regions of the retina. In controls, we temporarily limited the visual field to the central 10° to model peripheral loss.

View Article and Find Full Text PDF