Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Two types of voltage-dependent Ca(2+) channels have been identified in heart: high (I(CaL)) and low (I(CaT)) voltage-activated Ca(2+) channels. In guinea pig ventricular myocytes, low voltage-activated inward current consists of I(CaT) and a tetrodotoxin (TTX)-sensitive I(Ca) component (I(Ca(TTX))). In this study, we reexamined the nature of low-threshold I(Ca) in dog atrium, as well as whether it is affected by Na(+) channel toxins. Ca(2+) currents were recorded using the whole-cell patch clamp technique. In the absence of external Na(+), a transient inward current activated near -50 mV, peaked at -30 mV, and reversed around +40 mV (HP = -90 mV). It was unaffected by 30 microM TTX or micromolar concentrations of external Na(+), but was inhibited by 50 microM Ni(2+) (by approximately 90%) or 5 microM mibefradil (by approximately 50%), consistent with the reported properties of I(CaT). Addition of 30 microM TTX in the presence of Ni(2+) increased the current approximately fourfold (41% of control), and shifted the dose-response curve of Ni(2+) block to the right (IC(50) from 7.6 to 30 microM). Saxitoxin (STX) at 1 microM abolished the current left in 50 microM Ni(2+). In the absence of Ni(2+), STX potently blocked I(CaT) (EC(50) = 185 nM) and modestly reduced I(CaL) (EC(50) = 1.6 microM). While TTX produced no direct effect on I(CaT) elicited by expression of hCa(V)3.1 and hCa(V)3.2 in HEK-293 cells, it significantly attenuated the block of this current by Ni(2+) (IC(50) increased to 550 microM Ni(2+) for Ca(V)3.1 and 15 microM Ni(2+) for Ca(V)3.2); in contrast, 30 microM TTX directly inhibited hCa(V)3.3-induced I(CaT) and the addition of 750 microM Ni(2+) to the TTX-containing medium led to greater block of the current that was not significantly different than that produced by Ni(2+) alone. 1 microM STX directly inhibited Ca(V)3.1-, Ca(V)3.2-, and Ca(V)3.3-mediated I(CaT) but did not enhance the ability of Ni(2+) to block these currents. These findings provide important new implications for our understanding of structure-function relationships of I(CaT) in heart, and further extend the hypothesis of a parallel evolution of Na(+) and Ca(2+) channels from an ancestor with common structural motifs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2442173PMC
http://dx.doi.org/10.1085/jgp.200709883DOI Listing

Publication Analysis

Top Keywords

microm ni2+
20
ca2+ channels
16
microm ttx
16
microm
13
ni2+
11
na+ channel
8
channel toxins
8
icat
8
external na+
8
icat addition
8

Similar Publications

Colorimetric detection of trivalent chromium in aqueous solution using tartrate-capped silver nanoparticles as probe.

J Nanosci Nanotechnol

October 2013

Department of Chemistry, College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China.

This study describes a simple and highly selective method for the colorimetric detection of trivalent chromium (Cr3+) using tartrate-capped silver nanoparticles (AgNPs) as probe. The addition of tartrate to the initially prepared AgNPs gives tartrate-stabilized AgNPs ascribing to the electrostatic repulsion of the highly negatively charged tartrate ions covered on the surface of AgNPs. It is found that, in the presence of Cr3+ in aqueous solution, the aggregation of tartrate-stabilized AgNPs occurs.

View Article and Find Full Text PDF

[Fluorescence property of a chemical probe for naked-eye and detection of Fe3+].

Guang Pu Xue Yu Guang Pu Fen Xi

December 2012

College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.

A higher selective and sensitive probe for the detection of Fe(III) in aqueous media was made using 2,4-Diisocyanatotoluene (TDI) as a bridge to couple Fe3 O4 nanoparticles(NPs) and Rhodamine-6G hydrazide. The characterization of composite materials with Infrared spectra(IR), Thermal Gravimetric analysis(TGA) and Transmission Emission Microscopy(TEM) points to the graft of Rhodamine-6G hydrazide onto the surface of the Fe3O4. The obvious color change of the probe solution from light grey to pink upon the addition of Fe3+ demonstrated the probe could be used for "naked-eye" detection of Fe3+ in water at pH 7.

View Article and Find Full Text PDF

Microbial enzymatic reduction of a toxic form of chromium [Cr(VI)] has been considered as an effective method for bioremediation of this metal. This study reports on the in vitro reduction of Cr(VI) using cell-free extracts from a Cr(VI) reducing Bacillus firmus KUCr1 strain. Chromium reductase was found to be constitutive and its activity was observed both in soluble cell fractions (S12 and S150 and membrane cell fraction (P150).

View Article and Find Full Text PDF

Thin-layer chromatographic specification and separation of Cu(1+), Cu(2+), Ni(2+), and Co(2+) cations.

J Chromatogr Sci

July 2010

Department of Chemistry, Faculty of Science and Literature, Balikesir University, 10100 Balikesir, Turkey.

The M(PyDTC)(2) (M: Cu, Co, or Ni) and CuPyDTC complexes, prepared by reactions of ammonium pyrrolidinedithiocarbamate with metal nitrates, are examined for qualitative analysis, speciation, and mutual separation using thin-layer chromatography systems. These complexes and their mixtures are spotted to the activated and non-activated thin layers of silica gel 60GF(254) (Si-60GF(254)) with a 250-microm thickness. Toluene-dichloromethane mixtures (4:1, 1:1, 1:4 v/v) are used as mobile phases for running of the complexes.

View Article and Find Full Text PDF

An alpha-glucosidase enzyme produced by the fungus Thermoascus aurantiacus CBMAI 756 was purified by ultra filtration, ammonium sulphate precipitation, and chromatography using Q Sepharose, Sephacryl S-200, and Superose 12 columns. The apparent molecular mass of the enzyme was 83 kDa as determined in gel electrophoresis. Maximum activity was observed at pH 4.

View Article and Find Full Text PDF