A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Lower urogenital tract anatomical and functional phenotype in lysyl oxidase like-1 knockout mice resembles female pelvic floor dysfunction in humans. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Female pelvic floor dysfunction (FPFD) is a complex group of conditions that include urinary incontinence and pelvic organ prolapse (POP). In humans, elastin homeostasis has been implicated in the pathophysiology of FPFD. Lysyl oxidase-like 1 knockout (LOXL1-KO) mice demonstrate abnormal elastic fiber homeostasis and develop FPFD after parturition. We compared the lower urogenital tract (LUT) anatomy and function in LOXL1-KO mice with and without POP. LUT anatomy was assessed in LOXL1-KO mice over 28 wk. Pelvic visceral anatomy in LOXL1-KO was evaluated with a 7-Tesla magnetic resonance imaging (MRI) scanner. LUT function was assessed using conscious cystometry and leak point pressure (LPP) testing. Quantitative histological analysis of elastic fibers was performed on external urethral sphincter (EUS) cross sections. By 25 wk of age, 50% of parous LOXL1-KO mice developed POP. LOXL1-KO mice with POP had greater variability in the size and location of the bladder on MRI compared with mice without POP. Parity and POP were associated with lower LPP. Elastin clusters were significantly increased in the EUS of LOXL1-KO mice with POP. Because parity triggers POP in LOXL1-KO mice, LOXL1-KO mice with POP have variable internal pelvic anatomy, and both parity and POP are associated with a decrease in LPP, we conclude that LOXL1 LUT anatomical and functional phenotype resembles FPFD in humans. The increase in elastin clusters in the urethra of LOXL1-KO mice with POP suggests that elastin disorganization may lead to functional abnormalities. We conclude that LOXL1 warrants further investigation in the pathphysiology of FPFD.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajprenal.00063.2008DOI Listing

Publication Analysis

Top Keywords

loxl1-ko mice
36
mice pop
24
mice
11
pop
11
loxl1-ko
10
lower urogenital
8
urogenital tract
8
anatomical functional
8
functional phenotype
8
female pelvic
8

Similar Publications