A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Prediction of cardiac transcription networks based on molecular data and complex clinical phenotypes. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We present an integrative approach combining sophisticated techniques to construct cardiac gene regulatory networks based on correlated gene expression and optimized prediction of transcription factor binding sites. We analyze transcription levels of a comprehensive set of 42 genes in biopsies derived from hearts of a cohort of 190 patients as well as healthy individuals. To precisely describe the variety of heart malformations observed in the patients, we delineate a detailed phenotype ontology that allows description of observed clinical characteristics as well as the definition of informative meta-phenotypes. Based on the expression data obtained by real-time PCR we identify specific disease associated transcription profiles by applying linear models. Furthermore, genes that show highly correlated expression patterns are depicted. By predicting binding sites on promoter settings optimized using a cardiac specific chromatin immunoprecipitation data set, we reveal regulatory dependencies. Several of the found interactions have been previously described in literature, demonstrating that the approach is a versatile tool to predict regulatory networks.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b800207jDOI Listing

Publication Analysis

Top Keywords

networks based
8
regulatory networks
8
binding sites
8
prediction cardiac
4
transcription
4
cardiac transcription
4
transcription networks
4
based molecular
4
molecular data
4
data complex
4

Similar Publications