Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Nanosized crystalline Fe3O4 (with an average particle size of 16 nm) was successfully synthesized on a carbon matrix surface. The prepared sample was heat-treated in the temperature range 300 degrees C - 750 degrees C to remove residual impurities and to obtain a final product with a 77:23 ratio between magnetite and the carbon support. The sample was subjected to physicochemical and electrochemical tests. The purity of the phase and the particles size was determined by X-ray diffraction analysis and confirmed by field emission scanning electron micrographs. The specific surface area of the sample measured by the B.E.T method was 120 m2 g(-1). A series of electrochemical tests including EIS, CV and long-term constant current cycling have been performed. The obtained reversible capacity within 15 cycles was in the range 400-550 mA h x g(-1). The electrochemical behavior of the test sample and its possible practical use as an anode material in lithium secondary batteries are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2008.d077 | DOI Listing |