Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We recently described a novel antimicrobial peptide, RTA3, derived from the commensal organism Streptococcus mitis, with strong anti-Gram-negative activity, low salt sensitivity, and minimal mammalian cell toxicity in vitro and in vivo. This peptide conforms to the positively charged, amphipathic helical peptide motif, but has a positively charged amino acid (Arg-5) on the nonpolar face of the helical structure that is induced upon membrane binding. We surmised that disruption of the hydrophobic face with a positively charged residue plays a role in minimizing eukaryotic cell toxicity, and we tested this using a mutant with an R5L substitution. The greatly enhanced toxicity in the mutant peptide correlated with its ability to bind and adopt helical conformations upon interacting with neutral membranes; the wild type peptide RTA3 did not bind to neutral membranes (binding constant reduced by at least 1000-fold). Spectroscopic analysis indicates that disruption of the hydrophobic face of the parent peptide is accommodated in negatively charged membranes without partial peptide unfolding. These observations apply generally to amphipathic helical peptides of this class as we obtained similar results with a peptide and mutant pair (Chen, Y., Mant, C. T., Farmer, S. W., Hancock, R. E., Vasil, M. L., and Hodges, R. S. (2005) J. Biol. Chem. 280, 12316-12329) having similar structural properties. In contrast to previous interpretations, we demonstrate that these peptides simply do not bind well to membranes (like those of eukaryotes) with exclusively neutral lipids in their external bilayer leaflet. We highlight a significant role for tryptophan in promoting binding of amphipathic helical peptides to neutral bilayers, augmenting the arsenal of strategies to reduce mammalian toxicity in antimicrobial peptides.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M709154200DOI Listing

Publication Analysis

Top Keywords

amphipathic helical
16
cell toxicity
12
helical peptides
12
positively charged
12
mammalian cell
8
peptide
8
peptide rta3
8
disruption hydrophobic
8
hydrophobic face
8
neutral membranes
8

Similar Publications

Antimicrobial peptides (AMPs) have emerged as promising candidates for combating drug-resistant pathogens and certain cancer types. However, their therapeutic applications are often limited by undesired hemolytic activity, while many AMPs exhibit only moderate potency. Herein, the "helical wheel rotation" strategy as a simple, cost-effective, and modular approach to optimize the pharmacological properties of amphipathic α-helical AMPs without altering their amino acid composition is explored.

View Article and Find Full Text PDF

Antimicrobial resistance (AMR) has become a massive concern because it causes the loss of human life and an economic burden in many parts of the world. Antimicrobial peptides (AMPs) can be investigated as an alternative solution to combat AMR because their mechanism has the potential to reduce microbe resistance. In this study, the native P01 peptide from macroalgae was modified to P01.

View Article and Find Full Text PDF

Sequence motifs or patterns found in natural antimicrobial peptides (AMPs) have a great impact on their microbicidal activities. Here, through database inquiries and biological assays, we explore the enhanced antibacterial function associated with poly arginine (poly-R) motifs that typically occur as 3-5 concatenated R residues in many natural AMPs. Using a suite of biophysical techniques, we explore the structural consequences of a C-terminal poly-R motif at membranes and correlate our findings with the functional assays.

View Article and Find Full Text PDF

Investigating Curvature Sensing by the Nt17 Domain of Huntingtin Protein.

ACS Chem Neurosci

September 2025

Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States.

Nt17, the N-terminal domain of the huntingtin protein (htt), has garnered significant attention for its role in htt's membrane binding and aggregation processes. Previous studies have identified a nuclear export sequence within the Nt17 domain and demonstrated its localization at various cellular organelles. Recent evidence suggests that, like other amphipathic helices, Nt17 can sense and preferentially bind to curved membranes.

View Article and Find Full Text PDF

Intracellular calcium (Ca2+) levels are critical in maintaining cellular activities and are tightly regulated. Neuronal degeneration and regeneration rely on calcium-binding proteins. Calmodulin (CaM) is a calcium sensor and the primary regulator of receptors and ion channels that maintain calcium homeostasis.

View Article and Find Full Text PDF