98%
921
2 minutes
20
Motilin is a peptide hormone involved in gastrointestinal motility. GPR38, initially cloned as an orphan receptor, is now considered a specific receptor for motilin. Previously, molecular characterization of the motilin receptor had only been performed in mammalian and fish species. In this study, we cloned cDNA for chicken motilin receptor from the duodenum and characterized its primary structure, tissue distribution, and biological activity. The cDNA encoded 349 amino acids showing significant overall sequence identity to mammalian motilin receptors. Chicken motilin increased intracellular Ca2+ concentration in human embryonic kidney (HEK) 293 cells transiently expressing the recombinant chicken motilin receptor. Comparison of the cDNA sequence with the genomic sequence of chicken motilin receptor revealed that the chicken motilin receptor gene consists of two exons separated by an intron. Real-time PCR analysis showed that chicken motilin receptor mRNA is expressed in a wide range of tissues in 21-day-old chickens, with markedly high levels in the proventriculus, duodenum, and oviduct. The expression levels of the mRNA in the proventriculus and duodenum were highest just before hatching and rapidly decreased during post-hatch development. These results suggest that chicken motilin receptor is largely involved in gastrointestinal functions at pre- and post-hatch periods through an intracellular signaling pathway accompanied by an increase in Ca2+ levels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ygcen.2008.03.007 | DOI Listing |
Poult Sci
December 2024
College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Changchun 130118, China; Jilin Key Laboratory of Animal Nutrition and Feed Sciene, Jilin Agricultural Universit
Hesperidin shows promising results as a potential feed additive for enhancing gastrointestinal motility in animals. Gastrointestinal function plays a pivotal role in animal growth and the digestibility of dietary nutrients, with gastrointestinal motor function serving as a crucial component. However, limited research has been conducted on the application of hesperidin as a feed additive to promote gastrointestinal motility.
View Article and Find Full Text PDFGen Comp Endocrinol
January 2023
School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan. Electronic address:
Gen Comp Endocrinol
December 2021
School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan. Electronic address:
BMC Vet Res
October 2020
College of Life Science, Anhui Agricultural University, No. 130, Changjiang Road, Anhui, 230036, Hefei, The People's Republic of China.
Background: The excessive use of antibiotics in the livestock feed industry caused inevitable side effects of microbial resistance. Besides this residual antibiotics in animal-derived foodstuff imposed serious health problems for humans. So this study aimed to investigate the potential use of Bacillus velezensis to substitute antibiotics for poultry production.
View Article and Find Full Text PDFGen Comp Endocrinol
January 2020
Department of Veterinary Science, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan. Electronic address:
Motilin and ghrelin were identified in the pheasant by molecular cloning, and the actions of both peptides on the contractility of gastrointestinal (GI) strips were examined in vitro. Molecular cloning indicated that the deduced amino acid sequences of the pheasant motilin and ghrelin were a 22-amino acid peptide, FVPFFTQSDIQKMQEKERIKGQ, and a 26-amino acid peptide, GSSFLSPAYKNIQQQKDTRKPTGRLH, respectively. In in vitro studies using pheasant GI strips, chicken motilin caused contraction of the proventriculus and small intestine, whereas the crop and colon were insensitive.
View Article and Find Full Text PDF