98%
921
2 minutes
20
The synthesis and Delta F508-CFTR corrector activity of a 148-member methylbithiazole-based library are reported. Synthetic routes were devised and optimized to generate methylbithiazole analogs in four steps. Corrector potency and efficacy were assayed using epithelial cells expressing human Delta F508-CFTR. These structure-activity data establish that the bithiazole substructure plays a critical function; eight novel methylbithiazole correctors were identified with low micromolar potencies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3166558 | PMC |
http://dx.doi.org/10.1016/j.bmcl.2008.03.037 | DOI Listing |
Asian J Androl
November 2021
Department of Urology, UNC School of Medicine, Chapel Hill, NC 27599, USA.
Respir Res
October 2018
Department of Biosciences, Laboratory of Cellular and Molecular Physiology, University of Milano, via Celoria 26, I-20133, Milan, Italy.
Background: Although pharmacological treatment has increased the average life expectancy of patients with cystic fibrosis, the median survival of females is shorter than that of males. In vitro and in vivo studies have shown that estrogens play a relevant role in the disease progression. The aim of this study was to investigate the effects of 17β-estradiol and tamoxifen citrate (TMX) on calcium-activated chloride channel (CaCC) currents in human bronchial epithelial cells carrying the ΔPhe508-CFTR mutation both in homozygosis and in heterozygosis.
View Article and Find Full Text PDFSLAS Discov
September 2018
1 Department of Medicine, University of California, San Francisco, CA, USA.
The most common cystic fibrosis-causing mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) is deletion of phenylalanine at residue 508 (∆F508). The ∆F508 mutation impairs folding of nucleotide binding domain 1 (NBD1) and interfacial interactions of NBD1 and the membrane spanning domains. Here, we report a domain-targeted screen to identify ∆F508-CFTR modulators that act on NBD1.
View Article and Find Full Text PDFSci Rep
August 2017
Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
Mol Pharmacol
October 2015
Departments of Medicine and Physiology (P.-W.P., J.A.T., A.S.V.) and Department of Pathology (W.E.F.), University of California, San Francisco, California; Department of Physiology and Groupe de Recherche Axé sur la Structure des Protéine (G.V., G.L.L.) and Department of Biochemistry (G.L.L.), McG
Combination drug therapies under development for cystic fibrosis caused by the ∆F508 mutation in cystic fibrosis transmembrane conductance regulator (CFTR) include a "corrector" to improve its cellular processing and a "potentiator" to improve its chloride channel function. Recently, it was reported that the approved potentiator N-(2,4-di-tert-butyl-5-hydroxyphenyl)-4-oxo-1,4-dihydroquinoline-3-carboxamide (Ivacaftor) reduces ∆F508-CFTR cellular stability and the efficacy of investigational correctors, including 3-(6-[([1-(2,2-difluoro-1,3-benzodioxol-5-yl)cyclopropyl]carbonyl) amino]-3-methyl-2-pyridinyl)-benzoic acid and 1-(2,2-difluoro-1,3-benzodioxol-5-yl)-N-(1-[(2R)-2,3-dihydroxypropyl]-6-fluoro-2-(2-hydroxy-1,1-dimethylethyl)-1H-indol-5-yl), which might contribute to the modest reported efficacy of combination therapy in clinical trials. Here, we report the identification and characterization of potentiators that do not interfere with ∆F508-CFTR stability or corrector action.
View Article and Find Full Text PDF