Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Calmodulin (CaM) binds to KCNQ2-4 channels within their carboxy termini, where it regulates channel function. The existing data have not resolved the Ca2+ dependence of the interaction between the channels and CaM. We performed glutathione S-transferase (GST)-pull-down assays between purified KCNQ2-4 carboxy termini and CaM proteins to determine the Ca2+ dependence of the interaction in vitro. The assays showed substantial Ca2+ dependence of the interaction of the channels with wild-type (WT) CaM, but not with dominant-negative (DN) CaM. To demonstrate CaM-channel interactions in individual living cells, we performed fluorescence resonance energy transfer (FRET) between ECFP-tagged KCNQ2-4 channels and EYFP-tagged CaM expressed in CHO cells, performed under total internal reflection fluorescence (TIRF) microscopy, in which excitation light only penetrates several hundred nanometres into the cell, thus isolating membrane events. FRET was assayed between the channels and either WT or DN CaM, performed under conditions of normal [Ca2+]i, low [Ca2+]i or high [Ca2+]i induced by empirically optimized bathing solutions. The FRET data suggest a strong Ca2+ dependence for the interaction between WT CaM and KCNQ2, but less so for KCNQ3 and KCNQ4. FRET between all KCNQ2-4 channels and DN CaM was robust, and not significantly Ca2+ dependent. These data show interactions between CaM and KCNQ channels in living cells, and suggest that the interactions between KCNQ2-4 channels and CaM are likely to have Ca2+-dependent and Ca2+-independent components.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2479561PMC
http://dx.doi.org/10.1113/jphysiol.2008.152777DOI Listing

Publication Analysis

Top Keywords

kcnq2-4 channels
16
ca2+ dependence
16
dependence interaction
16
channels cam
16
living cells
12
cam
11
channels
9
carboxy termini
8
interaction channels
8
cam performed
8

Similar Publications

Primary vestibular afferents transmit information from hair cells about head position and movement to the CNS, which is critical for maintaining balance, gaze stability and spatial navigation. The CNS, in turn, modulates hair cells and afferents via the efferent vestibular system (EVS) and its activation of several cholinergic signaling mechanisms. Electrical stimulation of EVS neurons gives rise to three kinetically- and mechanistically-distinct afferent responses including a slow excitation, a fast excitation, and a fast inhibition.

View Article and Find Full Text PDF

Calmodulin (CaM) conveys intracellular Ca signals to KCNQ (Kv7, "M-type") K channels and many other ion channels. Whether this "calmodulation" involves a dramatic structural rearrangement or only slight perturbations of the CaM/KCNQ complex is as yet unclear. A consensus structural model of conformational shifts occurring between low nanomolar and physiologically high intracellular [Ca] is still under debate.

View Article and Find Full Text PDF

Calmodulin (CaM) binds to KCNQ2-4 channels within their carboxy termini, where it regulates channel function. The existing data have not resolved the Ca2+ dependence of the interaction between the channels and CaM. We performed glutathione S-transferase (GST)-pull-down assays between purified KCNQ2-4 carboxy termini and CaM proteins to determine the Ca2+ dependence of the interaction in vitro.

View Article and Find Full Text PDF