A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Formation of highly reactive cyclopentenone isoprostane compounds (A3/J3-isoprostanes) in vivo from eicosapentaenoic acid. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Omega-3 (omega-3) polyunsaturated fatty acids (PUFAs) found in marine fish oils are known to suppress inflammation associated with a wide variety of diseases. Eicosapentaenoic acid (EPA) is one of the most abundant omega-3 fatty acids in fish oil, but the mechanism(s) by which EPA exerts its beneficial effects is unknown. Recent studies, however, have demonstrated that oxidized EPA, rather than native EPA, possesses anti-atherosclerotic, anti-inflammatory, and anti-proliferative effects. Very few studies to date have investigated which EPA oxidation products are responsible for this bioactivity. Our research group has previously reported that anti-inflammatory prostaglandin A(2)-like and prostaglandin J(2)-like compounds, termed A(2)/J(2)-isoprostanes (IsoPs), are produced in vivo by the free radical-catalyzed peroxidation of arachidonic acid and represent one of the major products resulting from the oxidation of this PUFA. Based on these observations, we questioned whether cyclopentenone-IsoP compounds are formed from the oxidation of EPA in vivo. Herein, we report the formation of cyclopentenone-IsoP molecules, termed A(3)/J(3)-IsoPs, formed in abundance in vitro and in vivo from EPA peroxidation. Chemical approaches coupled with gas chromatography/mass spectrometry (GC/MS) and liquid chromatography/mass spectrometry (LC/MS) were used to structurally characterize these compounds as A(3)/J(3)-IsoPs. We found that levels of these molecules increase approximately 200-fold with oxidation of EPA in vitro from a basal level of 0.8 +/- 0.4 ng/mg EPA to 196 +/- 23 ng/mg EPA after 36 h. We also detected these compounds in significant amounts in fresh liver tissue from EPA-fed rats at basal levels of 19 +/- 2 ng/g tissue. Amounts increased to 102 +/- 15 ng/g tissue in vivo in settings of oxidative stress. These studies have, for the first time, definitively characterized novel, highly reactive A/J-ring IsoP compounds that form in abundance from the oxidation of EPA in vivo.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2335341PMC
http://dx.doi.org/10.1074/jbc.M800122200DOI Listing

Publication Analysis

Top Keywords

oxidation epa
12
epa
11
highly reactive
8
eicosapentaenoic acid
8
fatty acids
8
epa vivo
8
chromatography/mass spectrometry
8
+/- ng/mg
8
ng/mg epa
8
+/- ng/g
8

Similar Publications