Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
E-cadherin mediates calcium-dependent cell-cell adhesion between epithelial cells. The ectodomain of human E-cadherin contains four potential N-glycosylation sites at Asn residues 554, 566, 618, and 633. In this study, the role of N-glycosylation in E-cadherin-mediated cell-cell adhesion was investigated by site-directed mutagenesis. In MDA-MB-435 cells, all four potential N-glycosylation sites of human E-cadherin were N-glycosylated. Removal of N-glycan at Asn-633 dramatically affected E-cadherin stability. In contrast, mutant E-cadherin lacking the other three N-glycans showed similar protein stability in comparison with wild-type E-cadherin. Moreover, N-glycans at Asn-554 and Asn-566 were found to affect E-cadherin-mediated calcium-dependent cell-cell adhesion, and removal of either of the two N-glycans caused a significant decrease in calcium-dependent cell-cell adhesion accompanied with elevated cell migration. Analysis of the composition of adherens junctions (AJs) revealed that removal of N-glycans on E-cadherin resulted in elevated tyrosine phosphorylation level of beta-catenin and reduced beta- and alpha-catenins at AJs. These findings demonstrate that N-glycosylation may affect the adhesive function of E-cadherin through modifying the composition of AJs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcb.21608 | DOI Listing |