98%
921
2 minutes
20
Voltage-clamp fluorometry was performed with a cysteine-deprived mutant of rat organic cation transporter 1 (rOCT1) in which Phe483 in transmembrane alpha-helix (TMH) 11 close to the extracellular surface was replaced by cysteine and labeled with tetramethylrhodamine-6-maleimide. Potential-dependent fluorescence changes were observed that were sensitive to presence of substrates choline, tetraethylammonium (TEA), and 1-methyl-4-phenylpyridinium (MPP) and of the nontransported inhibitor tetrabutylammonium (TBuA). Using potential-dependent fluorescence changes as readout, one high-affinity binding site per substrate and two high-affinity binding sites for TBuA were identified in addition to the previously described single interaction sites. In a structure model of rOCT1 with an inward open cleft that was derived from a known crystal structure of lacY permease, Phe483 is close to Trp147 in TMH 2. In contrast, in a model with an outward open cleft these amino acids are far apart. After replacement of Phe483 or Trp147 by cysteine or serine, high-affinity binding of TBuA leads to inhibition of MPP or TEA uptake, whereas it has no effect on cation uptake by wild-type rOCT1. Coexisting high-affinity cation binding sites in organic cation transporters may collect low concentration xenobiotics and drugs; however, translocation including transitions between outward- and inward-oriented conformations may only be induced when a low-affinity cation binding site is loaded. We propose that cations bound to high-affinity sites may be translocated together with cations bound to low-affinity sites or that they may block the translocation mechanism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1124/mol.107.040170 | DOI Listing |
J Ethnopharmacol
September 2025
State Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Na
Ethnopharmacological Relevance: The traditional Chinese medicine Psoralea corylifolia L. (PCL) has been clinically used to treat diarrhea and gastrointestinal inflammatory disorders. G protein-coupled receptor 84 (GPR84) is emerging as a potential target for inflammatory bowel disease (IBD).
View Article and Find Full Text PDFJ Phys Chem B
September 2025
National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 11221, Taiwan, ROC.
The synthesis of -tetrakis(3,4,5-trimethoxyphenyl)porphyrin [HT(3,4,5-OCH)PP] and cobalt(II) -tetrakis(3,4,5-trimethoxyphenyl)porphyrin [Co(T(3,4,5-OCH)PP)] has been successfully accomplished. The oxidation properties of [Co(T(3,4,5-OCH)PP)] have been assessed through UV-vis, NMR, and EPR techniques. It can be seen in the UV-vis spectrum that adding SbCl caused extra peaks to appear at 674 nm, which means that a π-cation radical was formed.
View Article and Find Full Text PDFOrg Biomol Chem
September 2025
Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de La Cartuja, CSIC and Universidad de Sevilla, 41092 Sevilla, Spain.
In this paper, we present the NMR analysis of multivalent compounds displaying chondroitin sulfate E (CS-E) disaccharide ligands and their interaction with langerin. The disaccharides correspond to the two alternative sequences of CS-E: GlcA-GalNAc and GalNAc-GlcA. Firstly, we studied the conformation of the two corresponding series of glycodendrimers free in solution and in the presence of langerin.
View Article and Find Full Text PDFJ Phys Chem Lett
September 2025
Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
Ether-based electrolytes are widely acknowledged for their potential to form stable solid electrolyte interfaces (SEIs) for stable anode performance. However, conventional ether-based electrolytes have shown a tendency for cation-solvent co-intercalation phenomena on graphite electrodes, resulting in lower capacity and higher voltage platforms compared to those of neat cation insertion in ester-based electrolytes. In response, we propose the development of weakly solvating ether solvents to weaken the interaction between cations and solvents, thereby suppressing co-intercalation behavior.
View Article and Find Full Text PDFJ Phys Chem A
September 2025
Department of Basic Science, School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan.
Desorption processes of HO molecules from AlO(HO) ( = 3, 5, 7) and AlO(HO)H ( = 4, 6, 8) clusters were investigated using gas-phase thermal desorption spectrometry to evaluate the HO storage capacity and mechanisms of aluminum oxide clusters. The clusters stored approximately 10 HO molecules at ∼300 K, depending on the size (), and released them upon heating. Even after heating to ∼1000 K, 2-4 HO molecules remained bound.
View Article and Find Full Text PDF