A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Effect of quinones on formation and properties of bacteriochlorophyll c aggregates. | LitMetric

Effect of quinones on formation and properties of bacteriochlorophyll c aggregates.

Photosynth Res

Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic.

Published: May 2009


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Chlorosomes of green photosynthetic bacterium Chlorobium tepidum contain aggregates of bacteriochlorophyll c (BChl c) with carotenoids and isoprenoid quinones. BChl aggregates with very similar optical properties can be prepared also in vitro either in non-polar solvents or in aqueous buffers with addition of lipids and/or carotenoids. In this work, we show that the aggregation of BChl c in aqueous buffer can be induced also by quinones (vitamin K(1 )and K(2)), provided they are non-polar due to a hydrophobic side-chain. Polar vitamin K(3, )which possess the same functional group as K(1 )and K(2), does not induce the aggregation. The results confirm a principal role of the hydrophobic interactions as a driving force for the aggregation of chlorosomal BChls. The chlorosomal quinones play an important role in a redox-dependent excitation quenching, which may protect the cells against damage under oxygenic conditions. We found that aggregates of BChl c with vitamin K(1 )and K(2) exhibit an excitation quenching as well. The amplitude of the quenching depends on quinone concentration, as determined from fluorescence measurements. No lipid is necessary to induce the quenching, which therefore originates mainly from interactions of BChl c with quinones incorporated in the aggregate structure. In contrast, only a weak quenching was observed for dimers of BChl c in buffer (either with or without vitamin K(3)) and also for BChl c aggregates prepared with a lipid (lecithin). Thus, the weak quenching seems to be a property of BChl c itself.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11120-007-9259-9DOI Listing

Publication Analysis

Top Keywords

bchl
8
bchl aggregates
8
excitation quenching
8
weak quenching
8
quenching
6
quinones
5
aggregates
5
quinones formation
4
formation properties
4
properties bacteriochlorophyll
4

Similar Publications