A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Investigation of the C-terminal redox center of high-Mr thioredoxin reductase by protein engineering and semisynthesis. | LitMetric

Investigation of the C-terminal redox center of high-Mr thioredoxin reductase by protein engineering and semisynthesis.

Biochemistry

Department of Biochemistry, University of Vermont, 89 Beaumont Avenue, Given Laboratory, Room B413, Burlington, Vermont 05405, USA.

Published: August 2007


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

High-molecular weight thioredoxin reductases (TRs) catalyze the reduction of the redox-active disulfide bond of thioredoxin, but an important difference in the TR family is the sequence of the C-terminal redox-active tetrapeptide that interacts directly with thioredoxin, especially the presence or absence of a selenocysteine (Sec) residue in this tetrapeptide. In this study, we have employed protein engineering techniques to investigate the C-terminal redox-active tetrapeptides of three different TRs: mouse mitochondrial TR (mTR3), Drosophila melanogaster TR (DmTR), and the mitochondrial TR from Caenorhabditis elegans (CeTR2), which have C-terminal tetrapeptide sequences of Gly-Cys-Sec-Gly, Ser-Cys-Cys-Ser, and Gly-Cys-Cys-Gly, respectively. Three different types of mutations and chemical modifications were performed in this study: insertion of alanine residues between the cysteine residues of the Cys-Cys or Cys-Sec dyads, modification of the charge at the C-terminus, and altering the position of the Sec residue in the mammalian enzyme. The results show that mTR3 is quite accommodating to insertion of alanine residues into the Cys-Sec dyad, with only a 4-6-fold drop in catalytic activity. In contrast, the activity of both DmTR and CeTR2 was reduced 100-300-fold when alanine residues were inserted into the Cys-Cys dyad. We have tested the importance of a salt bridge between the C-terminus and a basic residue that was proposed for orienting the Cys-Sec dyad of mTR3 for proper catalytic position by changing the C-terminal carboxylate to a carboxamide. The result is an enzyme with twice the activity as the wild-type mammalian enzyme. A similar result was achieved when the C-terminal carboxylate of DmTR was converted to a hydroxamic acid or a thiocarboxylate. Last, reversing the positions of the Cys and Sec residues in the catalytic dyad resulted in a 100-fold loss of catalytic activity. Taken together, the results support our previous model of Sec as the leaving group during reduction of the C-terminus during the catalytic cycle.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3682222PMC
http://dx.doi.org/10.1021/bi7004812DOI Listing

Publication Analysis

Top Keywords

alanine residues
12
protein engineering
8
c-terminal redox-active
8
insertion alanine
8
mammalian enzyme
8
cys-sec dyad
8
catalytic activity
8
c-terminal carboxylate
8
c-terminal
5
residues
5

Similar Publications