Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The proper regulation of microtubule (MT) structure is important for dendritic and neural circuit development. However, the relationship between the regulation of the MTs in dendrites and the formation of neural function is still unclear. Stathmin is a MT destabilizer, and we have previously reported that the expression and the activity of stathmin is downregulated during cerebellar Purkinje cell (PC) development. In this study, we generated transgenic mice that specifically overexpress the constitutively active form of stathmin in the PCs. These mutant mice did not show any obvious morphological or excitatory transmission abnormalities in the cerebellum. In contrast, we observed a decline in the expression of MAP2 and KIF5 signal in the PC dendrites and a discoordination of motor function in the mutant mice, although they displayed normal general behavior. These data indicate that the overexpression of stathmin disrupts dendritic MT organization, motor protein distribution, and neural function in PCs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neures.2007.06.1464 | DOI Listing |